Skip to main content
Log in

Asymptotic Behavior of Eigen’s Quasispecies Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study Eigen’s quasispecies model in the asymptotic regime where the length of the genotypes goes to \(\infty \) and the mutation probability goes to 0. A limiting infinite system of differential equations is obtained. We prove convergence of trajectories, as well as convergence of the equilibrium solutions. We give analogous results for a discrete-time version of Eigen’s model, which coincides with a model proposed by Moran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bessho C, Kuroda N (1983) A note on a more general solution of Eigen’s rate equation for selection. Bull Math Biol 45(1):143–149

    Article  MathSciNet  MATH  Google Scholar 

  • Brumer Y, Michor F, Shakhnovich EI (2006) Genetic instability and the quasispecies model. J Theor Biol 241(2):216–222

    Article  MathSciNet  Google Scholar 

  • Cartan H (1967) Calcul différentiel. Hermann, Paris

    MATH  Google Scholar 

  • Cerf R, Dalmau J (2016) Quasispecies on class-dependent fitness landscapes. Bull Math Biol 78(6):1238–1258

    Article  MathSciNet  MATH  Google Scholar 

  • Dalmau J (2017) Convergence of a Moran model to Eigen’s quasispecies model. J Theor Biol 420:36–40

    Article  MathSciNet  MATH  Google Scholar 

  • Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76:159–216

    Article  Google Scholar 

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523

    Article  Google Scholar 

  • Gago S, Elena SF, Flores R, Sanjuán R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308

    Article  Google Scholar 

  • Huang C-I, Min-Feng T, Lin H-H, Chen C-C (2017) Variation approach to error threshold in generic fitness landscape. Chin J Phys 55(3):606–618

    Article  Google Scholar 

  • Jones BL (1977) Analysis of Eigen’s equations for selection of biological molecules with fluctuating mutation rates. Bull Math Biol 39(3):311–316

    MathSciNet  MATH  Google Scholar 

  • Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38(1):15–28

    Article  MATH  Google Scholar 

  • Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLOS Pathog 6(7):1–8

    Article  Google Scholar 

  • Moran PAP (1976) Global stability of genetic systems governed by mutation and selection. Math Proc Camb Philos Soc 80(2):331–336

    Article  MathSciNet  MATH  Google Scholar 

  • Moran PAP (1977) Global stability of genetic systems governed by mutation and selection. II. Math Proc Camb Philos Soc 81(3):435–441

    Article  MathSciNet  MATH  Google Scholar 

  • Ojosnegros S, Perales C, Mas A, Domingo E (2011) Quasispecies as a matter of fact: viruses and beyond. Virus Res 162(1):203–215 (Negative strand RNA viruses: to mark the retirement of Dr. Brian WJ Mahy, Founder and Editor-in-Chief, 1984–2011)

    Article  Google Scholar 

  • Sardanyés J, Martínez R, Simó C, Solé R (2017) Abrupt transitions to tumor extinction: a phenotypic quasispecies model. J Math Biol 74(7):1589–1609

    Article  MathSciNet  MATH  Google Scholar 

  • Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16(4):329–45

    Article  Google Scholar 

  • Thompson CJ, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a public grant as part of the Investissement d’avenir Project, Reference ANR-11-LABX-0056-LMH, LabEx LMH. The author wishes to thank Michel Benaïm and Raphaël Cerf for the valuable discussion that contributed to improve the article. The author is also grateful for the comments of an anonymous referee, as well as of the Associate Editor, which helped to improve the presentation and readability of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseba Dalmau.

Appendix: Lemmas on Linear ODEs

Appendix: Lemmas on Linear ODEs

We give here some lemmas concerning linear ODEs, and specially their longtime behavior.

Lemma A.1

Let \(\alpha :[0,+\infty [\,\longrightarrow [0,+\infty [\,\) and \(\beta :[0,+\infty [\,\longrightarrow {\mathbb {R}}\) be Lipschitz functions, and let \((z(t),t\ge 0)\) be the solution of the differential equation

$$\begin{aligned} z'(t) = \alpha (t)+\beta (t)z(t). \end{aligned}$$

If \(z(0)\ge 0\), then \(z(t)\ge 0\) for all \(t\ge 0\).

Proof

The trajectory \((z(t),t\ge 0)\) is continuous. If there exists \(t^*\ge 0\) such that \(z(t^*)=0\), then

$$\begin{aligned} z'(t^*) = \alpha (t^*)\,\ge \,0, \end{aligned}$$

and thus \(z(t)\ge 0\) for all \(t\ge 0\). \(\square \)

Lemma A.2

Let \(\alpha ,{\widetilde{\alpha }}:[0,+\infty [\,\longrightarrow [0,+\infty [\,\) and \(\beta ,{\widetilde{\beta }}:[0,+\infty [\,\longrightarrow {\mathbb {R}}\) be Lipschitz functions satisfying

$$\begin{aligned} \forall \,t\ge 0,\quad \alpha (t) \le {\widetilde{\alpha }}(t),\quad \beta (t) \le {\widetilde{\beta }}(t). \end{aligned}$$

Let \((y(t),t\ge 0)\) and \((z(t),t\ge 0)\) be the solutions of the ODEs

$$\begin{aligned} y'(t) = \alpha (t)+\beta (t)y(t),\quad z'(t) = {\widetilde{\alpha }}(t)+{\widetilde{\beta }}(t)z(t). \end{aligned}$$

If \(z(0)\ge y(0)\ge 0\), then \(z(t)\ge y(t)\) for all \(t\ge 0\).

Proof

We have

$$\begin{aligned} z'(t)-y'(t) = {\widetilde{\alpha }}(t)-\alpha (t)+\left( {\widetilde{\beta }}(t)-\beta (t)\right) z(t) +{\widetilde{\beta }}(t)\left( z(t)-y(t)\right) . \end{aligned}$$

From the previous lemma, \(z(t)\ge 0\) for all \(t\ge 0\). Thus, applying the previous lemma once again, \(z(t)-y(t)\ge 0\) for all \(t\ge 0\). \(\square \)

Lemma A.3

Let \(\alpha ,\beta :[0,+\infty [\,\longrightarrow [0,+\infty [\,\) be Lipschitz functions, and suppose that there exist \(\alpha ^*,\beta ^*\in \,]0,+\infty [\,\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty }\alpha (t) = \alpha ^*,\quad \lim _{t\rightarrow \infty }\beta (t) = \beta ^*. \end{aligned}$$

Let \((y(t),t\ge 0)\) be the solution of the differential equation

$$\begin{aligned} y'(t) = \alpha (t)-\beta (t)y(t). \end{aligned}$$

Then, for every initial condition \(y(0)\in {\mathbb {R}}\),

$$\begin{aligned} \lim _{t\rightarrow \infty }y(t) = \frac{\alpha ^*}{\beta ^*}. \end{aligned}$$

Proof

Let \(\varepsilon >0\) be small enough so that \(\alpha ^*-\varepsilon ,\beta ^*-\varepsilon >0\). Let \(T\ge 0\) be large enough so that

$$\begin{aligned} \forall \,t\ge T,\quad |\alpha (t)-\alpha ^*|<\varepsilon ,\quad |\beta (t)-\beta ^*|<\varepsilon . \end{aligned}$$

Let \(({\underline{y}}(t),t\ge 0)\) and \(({\overline{y}}(t),t\ge 0)\) be the solutions of the differential equations

$$\begin{aligned} {\underline{y}}'(t) = (\alpha ^*-\varepsilon )-(\beta ^*+\varepsilon ){\underline{y}}'(t),\quad {\overline{y}}'(t) = (\alpha ^*+\varepsilon )-(\beta ^*-\varepsilon ){\overline{y}}'(t), \end{aligned}$$

with \({\underline{y}}(0)= {\overline{y}}(0)=y(T)\). From the previous lemma, for all \(t\ge 0\),

$$\begin{aligned} {\underline{y}}(t) \le y(T+t) \le {\overline{y}}(t). \end{aligned}$$

Yet, \({\underline{y}}(t)\) and \({\overline{y}}(t)\) converge:

$$\begin{aligned} \lim _{t\rightarrow \infty }{\underline{y}}(t) = \frac{\alpha ^*-\varepsilon }{\beta ^*+\varepsilon },\quad \lim _{t\rightarrow \infty }{\overline{y}}(t) = \frac{\alpha ^*+\varepsilon }{\beta ^*-\varepsilon }. \end{aligned}$$

We conclude that

$$\begin{aligned} \frac{\alpha ^*-\varepsilon }{\beta ^*+\varepsilon } \le \liminf _{t\rightarrow \infty } y(t) \le \limsup _{t\rightarrow \infty }y(t) \le \frac{\alpha ^*+\varepsilon }{\beta ^*-\varepsilon }. \end{aligned}$$

We send \(\varepsilon \) to 0, and we obtain the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalmau, J. Asymptotic Behavior of Eigen’s Quasispecies Model. Bull Math Biol 80, 1689–1712 (2018). https://doi.org/10.1007/s11538-018-0420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0420-8

Keywords

Navigation