Skip to main content

Advertisement

Log in

Modeling the Effect of Prey Refuge on a Ratio-Dependent Predator–Prey System with the Allee Effect

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ajraldi V, Pittavino M, Venturino E (2011) Modeling herd behavior in population systems. Nonlinear Anal-Real 12:2319–2338

    Article  MathSciNet  MATH  Google Scholar 

  • Aguirre P, Flores JD, Flores JD, González-Olivares E (2014) Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey and ratio-dependent functional response. Nonlinear Anal-Real 16:235–249

    Article  MathSciNet  MATH  Google Scholar 

  • Allee WC (1932) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Google Scholar 

  • Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139:311–326

    Article  Google Scholar 

  • Cai L, Chen G, Xiao D (2013) Multiparametric bifurcations of an epidemiological model with strong Allee effect. J Math Biol 67:185–215

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Chen F, Chen L (2010) Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal-Real 11:246–252

    Article  MathSciNet  MATH  Google Scholar 

  • Fan RN (2015) A predator-prey model incorporating prey refuge and Allee effect. Appl Mech Mater 713–715:1534–1539

    Article  Google Scholar 

  • Fan M, Wu P, Feng Z, Swihar RK (2016) Dynamics of predator-prey metapopulations with Allee effects. Bull Math Biol 78:662–694

    Article  MathSciNet  Google Scholar 

  • Flores JD, González-Olivares E (2014) Dynamics of a predator-prey model with Allee effect on prey and ratio-dependent functional response. Ecol Complex 18:59–66

    Article  MATH  Google Scholar 

  • Gao Y, Li B (2013) Dynamics of a ratio-dependent predator-prey system with strong Allee effect. Disc Contin Dyn Syst Ser B 18(9):2283–2313

    Article  MathSciNet  MATH  Google Scholar 

  • González-Olivars E, Ramos-Jiliberto R (2003) Dynamics consequences of prey refuges in a simple model system: more prey, few predators and enhanced stability. Ecol Model 166:135–146

    Article  Google Scholar 

  • González-Olivars E, Rojas-Palma A (2011) Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. Bull Math Biol 73:1378–1397

    Article  MathSciNet  MATH  Google Scholar 

  • Haque M, Rahman MS, Venturino E, Li BL (2014) Effect of a functional response-dependent prey refuge in a predator-prey model. Ecol Complex 20:248–256

    Article  Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Hsu SB, Hwang TW, Kuang Y (2001) Global analysis of the Michaelis–Menten type ratio-dependent predator-prey system. J Math Biol 42:489–506

    Article  MathSciNet  MATH  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45:3–60

    Google Scholar 

  • Huang J, Ruan S, Song J (2014) Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J Differ Equ 257:1721–1752

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J, Xia X, Zhang X, Ruan S (2016) Bifurcation of codimension 3 in a predator-prey system of Leslie type with simplified Holling type IV functional response. Int J Bifurc Chaos 26(2):1650034

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y, Chen F, Zhong L (2006) Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Appl Math Comput 182:672–683

    MathSciNet  MATH  Google Scholar 

  • Kar TK (2005) Stability analysis of a prey-predator model incorporating a prey refuge. Commun Nonlinear Sci Numer Simul 10:681–691

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang Y, Beretta E (1998) Global qualitative analysis of a ratio-dependent predator-prey system. J Math Biol 36:389–406

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang Y (1999) Rich Dynamics of Gause-type ratio-dependent predator-prey systems. Fields Inst Commun 21:325–337

    MathSciNet  MATH  Google Scholar 

  • Kŕivan V (1998) Effects of optimal antipredator behvior of prey on predator-prey dynamics: the role of reufuges. Theor Popul Biol 53:131–142

    Article  MATH  Google Scholar 

  • Kuznetsov YA (1998) Elements of applied bifurcation theory, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Li B, Kuang Y (2007) Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system. SIAM J Appl Math 67:1453–1464

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z (2009a) Review effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges. Math Biosci 218:73–79

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Z, Li W, Shu-fan W, Li Z (2009b) Dynamical analysis of prey refuges in a predator-prey system with lvlev functional response. Dyn Contin Discret Impuls Syst Ser B Appl Algorithms 16:741–748

    MATH  Google Scholar 

  • Ma Z, Wang S, Li W, Li Z (2013) The effect of prey refuge in a patchy predator-prey system. Math Biosci 243:126–130

    Article  MathSciNet  MATH  Google Scholar 

  • McNair JN (1986) The effects of refuges on predator-prey interactions: a reconsideration. Theor Popul Biol 29(1):38–63

    Article  MathSciNet  MATH  Google Scholar 

  • Morozov A, Petrovskii S, Li BL (2004) Bifurcations and chaos in a predator-prey system with the Allee effect. Proc R Soc Lond B 271:1407–1414

    Article  Google Scholar 

  • Murray JD (1993) Mathematical biology. Springer, New York

    Book  MATH  Google Scholar 

  • Perko L (2000) Differential equations and dynamical systems, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Rana S, Bhowmick AR, Bhattacharya S (2014) Impact of prey refuge on a discrete time predator-prey system with Allee effect. Int J Bifurc Chaos 24:1450106

    Article  MathSciNet  MATH  Google Scholar 

  • Ruxton GD (1995) Short term refuge use and stability of predator-prey models. Theor Popul Biol 47:1–17

    Article  MATH  Google Scholar 

  • Sih A (1987) Prey refuges and predator-prey stability. Theor Popul Biol 31:1–12

    Article  MathSciNet  Google Scholar 

  • Tian X, Xu R (2011) Global dynamics of a predator-prey system with Holling type II functional response. Nonlinear Anal Model Control 16:242–253

    MathSciNet  MATH  Google Scholar 

  • Wang J, Shi J, Wei J (2011) Predator-prey system with strong Allee effect in prey. J Math Biol 62:291–331

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Wang J (2012) Influence of prey refuge on predator-prey dynamics. Nonlinear Dyn 67(1):191–201

    Article  MathSciNet  Google Scholar 

  • Wang W, Zhu Y, Cai Y, Wang W (2014) Dynamical complexity induced by Allee effect in a predator-prey model. Nonlinear Anal-Real 16:103–119

    Article  MathSciNet  MATH  Google Scholar 

  • Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, Berlin

    Book  MATH  Google Scholar 

  • Xiao D, Ruan S (2001) Global dynamics of a ratio-dependent predator-prey system. J Math Biol 43:268–290

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Liu Y, Wang G (2005) The stability of predator-prey systems subject to the Allee effects. Theo Popul Biol 67:23–31

    Article  MATH  Google Scholar 

  • Zua J, Mimurab M (2010) The impact of Allee effect on a predator-prey system with holling type II functional response. Appl Math Comput 217:3542–3556

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Misra.

Appendices

Appendix

Positivity and Boundedness of the Model Solutions

From the model system (1), we have

$$\begin{aligned} x(t)=\left\{ \begin{array}{ll} x(0) exp \left[ \displaystyle \int _{0}^{t}\left( r \left( 1- \frac{x(s)}{K}\right) (x(s)-\theta )\right) ds\right] &{} \text{ if } \ \ \ \ \ 0 \le x \le m \\ x(0) exp \left[ \displaystyle \int _{0}^{t}\left( r \left( 1- \frac{x(s)}{K}\right) (x(s)-\theta ) - \frac{a (x(s)-m)y(s)}{(x(s)-m+y(s))x(s)}\right) ds\right] &{} \text{ if } \ \ \ \ \ x > m, \end{array} \right. \nonumber \\ \end{aligned}$$
(25)

and

$$\begin{aligned} y(t)=\left\{ \begin{array}{ll} y(0) exp(-dt) &{} \text{ if } \ \ \ \ \ 0 \le x \le m \\ y(0) exp \left[ \displaystyle \int _{0}^{t}\left( \frac{e a (x(s)-m)}{x(s)-m+y(s)}-d \right) ds \right] &{} \text{ if } \ \ \ \ \ x > m. \end{array} \right. \end{aligned}$$
(26)

From the above, we can see that \(x(t) \ge 0\) and \(y(t) \ge 0\) whenever \(x(0) > 0\) and \(y(0) >0\). Thus, all the solutions starting in the interior of the positive quadrant remain in it for all \(t \ge 0\).

Now, we show the boundedness of the model solutions. For this, consider Eq. (25), which can be written as

$$\begin{aligned} x(t)= & {} x(0) exp \left[ \int _{0}^{t}F (x(s), y(s))ds\right] , \end{aligned}$$

where,

$$\begin{aligned} F(x(s), y(s))=\left\{ \begin{array}{ll} r \left( 1- \frac{x(s)}{K}\right) (x(s)-\theta ) &{} \text{ if } \ \ \ \ \ 0 \le x \le m \\ r \left( 1- \frac{x(s)}{K}\right) (x(s)-\theta ) - \frac{a (x(s)-m)y(s)}{(x(s)-m+y(s))x(s)} &{} \text{ if } \ \ \ \ \ x > m. \end{array} \right. \end{aligned}$$

Now, two cases arise:

Case I: \(x(0)\in (0,K)\)

In this case, we claim that \(x(t) \le K\) for all \(t \ge 0\). Otherwise, there exists two positive real numbers \(t_1\) and \(t_2\) such that \(x(t_1)=K\) and \(x(t)> K\) for all \(t \in (t_1, t_2)\). Then, for all \(t \in (t_1, t_2)\),

$$\begin{aligned} x(t)= & {} x(0) exp \left[ \int _{0}^{t}F (x(s), y(s))ds\right] \nonumber \\= & {} x(0) exp \left[ \int _{0}^{t_1}F (x(s), y(s))ds\right] exp \left[ \int _{t_1}^{t}F (x(s), y(s))ds\right] \nonumber \\= & {} x(t_1) exp \left[ \int _{t_1}^{t}F (x(s), y(s))ds\right] < x(t_1)=K, \end{aligned}$$
(27)

as \(F (x(t), y(t))<0\) for all \(t \in (t_1, t_2)\). This contradicts our hypothesis. Hence \(x(t) \le K\) for all future time.

Case II: When \(x(0)>K\).

In this case, as long as \(x(t)\ge K\)

$$\begin{aligned} x(t)= & {} x(0) exp \left[ \int _{0}^{t}F (x(s), y(s))ds\right] \le x(0), \end{aligned}$$

as \(F (x(t), y(t))\le 0\) for \(x(t)\ge K\).

Combining both the above cases, it can be concluded that for any positive solution

$$\begin{aligned} x(t) \le max\{x(0),K\}. \end{aligned}$$

Now, from model system (1), we have

$$\begin{aligned} \frac{d x(t)}{dt}+ \frac{1}{e}\frac{d y(t)}{dt}\le & {} r x \left( 1- \frac{x}{K}\right) (x-\theta ) -\frac{d y}{e}. \end{aligned}$$

Let \(\xi = max_{t\ge 0}r x \left( 1- \frac{x}{K}\right) (x-\theta ) + d x\), then

$$\begin{aligned} \frac{d x(t)}{dt}+ \frac{1}{e}\frac{d y(t)}{dt}\le \xi - d \left( x+ \frac{y}{e}\right) . \end{aligned}$$
(28)

Using Gronwall’s inequality, we have

$$\begin{aligned} x(t)+ \frac{y(t)}{e} \le \left( x(0)+ \frac{y(0)}{e} \right) e^{-d t}+\frac{\xi }{d}(1-e^{-d t }). \end{aligned}$$
(29)

For large enough t, we can write

$$\begin{aligned} x(t)+ \frac{y(t)}{e} \le \frac{\xi }{d}+\epsilon , \end{aligned}$$
(30)

for arbitrary \(\epsilon >0\). Since x(t) is bounded, (30) implies that y(t) is also bounded.

Stability of Bifurcating Periodic Solutions

Applying the transformation

$$\begin{aligned} z_1= x-x_2^*, \ \ z_2=y-y_2^*, \end{aligned}$$
(31)

the model system (3) reduces to the following system

$$\begin{aligned} \dot{z_1}= & {} a_{10} z_1 +a_{01} z_2 + a_{20} z_1^2 + a_{11} z_1 z_2 +a_{02}z_2^2+a_{30} z_1^3\nonumber \\&+ a_{21} z_1^2 z_2 + a_{12}z_1 z_2^2+a_{03}z_2^3+0(\mid z\mid ^4),\nonumber \\ \dot{z_2}= & {} b_{10} z_1 + b_{01} z_2+b_{20} z_1^2 + b_{11} z_1 z_2 +b_{02}z_2^2+ b_{30} z_1^3\nonumber \\&+ b_{21} z_1^2 z_2+ b_{12}z_1 z_2^2+b_{03}z_2^3+0(\mid z\mid ^4), \end{aligned}$$
(32)

where

$$\begin{aligned}&a_{10}=\frac{d}{e}f'(x_2^*)-\frac{a y_2^*}{x_2^*-m+y_2^*}+\frac{ a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^2}, a_{01}=-\frac{ a (x_2^*-m)^2}{(x_2^*-m+y_2^*)^2},\\&a_{20}=\frac{r}{K}(K+\theta -3 x_2^*)+\frac{a {y_2^*}^2}{(x_2^*-m+y_2^*)^3},\\&a_{11}=\frac{-2 a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^3}, \ a_{02}=\frac{a (x_2^*-m)^2}{(x_2^*-m+y_2^*)^3}, \ a_{30}= -\frac{r}{K}-\frac{a {y_2^*}^2}{(x_2^*-m+y_2^*)^4},\\&a_{21}=-\frac{a y_2^*}{(x_2^*-m+y_2^*)^3}+\frac{3 a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^4},\\&\quad a_{12}=-\frac{a (x_2^*-m)}{(x_2^*-m+y_2^*)^3}+\frac{3 a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^4},\\&a_{03}=-\frac{a (x_2^*-m)^2}{(x_2^*-m+y_2^*)^4}, b_{10}=\frac{e a {y_2^*}^2}{(x_2^*-m+y_2^*)^2}, b_{01}=\frac{-e a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^2},\\&b_{20}=-\frac{e a {y_2^*}^2}{(x_2^*-m+y_2^*)^3}, b_{11}=\frac{2 e a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^3}, \ b_{02}=-\frac{e a (x_2^*-m)^2}{(x_2^*-m+y_2^*)^3}, \\&b_{30}= \frac{e a {y_2^*}^2}{(x_2^*-m+y_2^*)^4},\ b_{21}=\frac{e a y_2^*}{(x_2^*-m+y_2^*)^3}-\frac{3 e a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^4},\\&b_{12}=\frac{e a (x_2^*-m)}{(x_2^*-m+y_2^*)^3}-\frac{3 e a (x_2^*-m)y_2^*}{(x_2^*-m+y_2^*)^4},\ b_{03}=\frac{e a (x_2^*-m)^2}{(x_2^*-m+y_2^*)^4}. \end{aligned}$$

The system (32) can be written as

$$\begin{aligned} \dot{Z}= J_{E_2^*} Z+ Q (Z), \end{aligned}$$
(33)

where,

$$\begin{aligned} Z= & {} \left( \begin{array}{c} z_1\\ z_2 \end{array} \right) \ and \ Q= \left( \begin{array}{c} Q^1\\ Q^2 \end{array} \right) \\= & {} \left( \begin{array}{c} a_{20} z_1^2 + a_{11} z_1 z_2 +a_{02}z_2^2+a_{30} z_1^3+ a_{21} z_1^2 z_2+a_{12}z_1 z_2^2+a_{03}z_2^3 \\ b_{20} z_1^2 + b_{11} z_1 z_2 +b_{02}z_2^2+ b_{30} z_1^3+ b_{21} z_1^2 z_2+b_{12}z_1 z_2^2+b_{03}z_2^3 \end{array} \right) .\end{aligned}$$

The eigenvector v of Jacobian matrix \(J_{E_2^*}\) corresponding to the eigenvalue \(i \omega _0\) at \(a=a_c\) is found to be \( v=( a_{01}, i \omega _0-a_{10})^T\). Now define

$$\begin{aligned} A= & {} (Re(v), -\,Im(v))\\= & {} \left( \begin{array}{cc} a_{01}\ \ \ &{}0\\ -\,a_{10}\ \ \ &{} -\,\omega _0 \end{array}\right) . \end{aligned}$$

Let \(Z=A Y\) or \(Y=A^{-1} Z\), where \(Y= (y_1, y_2)^T\). Under this linear transformation, system (33) becomes

$$\begin{aligned} \dot{Y}= (A^{-1} J_{E_2^*} A) Y + A^{-1} Q(A Y), \end{aligned}$$
(34)

This can be written as,

$$\begin{aligned} \left( \begin{array}{c} \dot{y_1}\\ \dot{y_2} \end{array} \right) =\left( \begin{array}{cc} 0 &{} -\omega _0\\ \omega _0 &{} 0 \end{array} \right) \left( \begin{array}{c} y_1\\ y_2 \end{array} \right) + \left( \begin{array}{c} F^1(y_1,y_2; a_c)\\ F^2(y_1,y_2;a_c) \end{array} \right) \end{aligned}$$
(35)

where

$$\begin{aligned}&F^1(y_1,y_2; a_c)= \frac{1}{a_{01}}Q^1,\\&\quad F^2(y_1,y_2; a_c)= -\frac{1}{\omega _0 a_{01}}(a_{10} Q^1+a_{01} Q^2).\\ Q^1&= (a_{20} {a_{01}}^2-a_{11}a_{01} a_{10}+ a_{02}{a_{10}}^2)y_1^2+(2 a_{02} a_{10}-a_{11}a_{01})\omega _0 y_1 y_2\\&\quad +\, a_{02}\omega _0^2 y_2^2+(a_{30}{a_{01}}^3+a_{12} a_{01} {a_{10}}^2-a_{21}{a_{01}}^2 a_{10}-a_{03} {a_{10}}^3)y_1^3-a_{03}\omega _0^3 y_2^3\\&\quad +\, (2 a_{12}a_{10}a_{01}-a_{21}{a_{01}}^2-3 a_{03}{a_{10}}^2)\omega _0y_1^2y_2+(a_{12}a_{01}-3a_{03}a_{10})\omega _0^2 y_1 y_2^2,\\ Q^2&= (b_{20} {a_{01}}^2-b_{11}a_{01} a_{10}+ b_{02}{a_{10}}^2)y_1^2+(2 b_{02} a_{10}-b_{11}a_{01})\omega _0 y_1 y_2\\&\quad +\, b_{02}\omega _0^2 y_2^2+(b_{30}{a_{01}}^3+b_{12} a_{01} {a_{10}}^2-b_{21}{a_{01}}^2 a_{10}-b_{03} {a_{10}}^3)y_1^3-b_{03}\omega _0^3 y_2^3\\&\quad +\, (2 b_{12}a_{10}a_{01}-b_{21}{a_{01}}^2-3 b_{03}{a_{10}}^2)\omega _0y_1^2y_2+(b_{12}a_{01}-3b_{03}a_{10})\omega _0^2 y_1 y_2^2. \end{aligned}$$

In order to determine the stability and direction of the periodic solution, we need to calculate the following quantity called Lyapunov coefficient (Wiggins 1990).

$$\begin{aligned} l_1= & {} \frac{1}{16}\left( F^1_{111}+ F^2_{112}+F^1_{122}+ F^2_{222}\right) +\frac{1}{16 \omega _0}\left[ F^1_{12}\left( F^1_{11}+F^1_{22}\right) \right. \\&\left. -F^2_{12}\left( F^2_{11}+F^2_{22}\right) -F^1_{11}F^2_{11}+F^1_{22}F^2_{22}\right] . \end{aligned}$$

where \(\displaystyle F^k_{ij}=\left[ \frac{\partial F^k}{\partial y_i \partial y_j}\right] _{(0,0;a_c)}\) and \(\displaystyle F^k_{ijl}=\left[ \frac{\partial F^k}{\partial y_i \partial y_j \partial y_l}\right] _{(0,0; a_c)}\).

The bifurcating periodic solutions are orbitally stable or unstable according as \(l_1<0\) or \(l_1>0\).

Conditions for the Non-degeneracy of BT Bifurcation

In the following, we will show that the conditions for non-degeneracy of BT bifurcation are satisfied using the algorithm given in (Kuznetsov 1998). Consider the system

$$\begin{aligned} \frac{dx}{dt}= & {} r x \left( 1- \frac{x}{K}\right) (x-\theta ) - \frac{(a_{\mathrm{SN}}+\nu _1) (x-m)y}{x-m+y}= f_1(x,y;\nu ), \nonumber \\ \frac{dy}{dt}= & {} \frac{(1+\nu _2)(a_{\mathrm{SN}}+\nu _1) (x-m)y}{x-m+y}- d y=f_2(x,y;\nu ), \end{aligned}$$
(36)

where \(\nu _1\) and \(\nu _2\) are small. When \(\nu _1=0\) and \(\nu _2=0\), system (36) has one positive equilibrium \((x^*, y^*)\), which is a cusp of codimension 2.

Let \(u_1 = x - x^*\) and \(u_2 = y - y^*\). Then, system (36) becomes

$$\begin{aligned} \dot{u_1}= & {} \left( c_{10}-\frac{\nu _1 {y^*}^2}{(x^*-m+y^*)^2}\right) u_1 + \left( c_{01}-\frac{\nu _1 (x^*-m)^2}{(x^*-m+y^*)^2}\right) u_2\nonumber \\&+ c_{20} u_1^2 + c_{11} u_1 u_2 +c_{02}u_2^2+0(\mid u\mid ^3),\nonumber \\ \dot{u_2}= & {} \left( d_{10}+\frac{(\nu _2 a_{\mathrm{SN}}+\nu _1+\nu _1 \nu _2) {y^*}^2}{(x^*-m+y^*)^2}\right) u_1\nonumber \\&+ \left( d_{01}+\frac{(\nu _2 a_{\mathrm{SN}}+\nu _1+\nu _1 \nu _2) (x^*-m)^2}{(x^*-m+y^*)^2}\right) u_2 \nonumber \\&+ d_{20} u_1^2 + d_{11} u_1 u_2 +d_{02}u_2^2+0(\mid u\mid ^3), \end{aligned}$$
(37)

where

$$\begin{aligned}&c_{10}=\frac{ a_{\mathrm{SN}} (x^*-m)y^*}{(x^*-m+y^*)^2}, c_{01}=-\frac{ a_{\mathrm{SN}} (x^*-m)^2}{(x^*-m+y^*)^2},\ c_{20}=\frac{r}{K}(K+\theta -3 x^*)\\&\qquad +\frac{(a_{\mathrm{SN}}+\nu _1) {y^*}^2}{(x^*-m+y^*)^3},\\&c_{11}=\frac{-2 (a_{\mathrm{SN}}+\nu _1) (x^*-m)y^*}{(x_2^*-m+y^*)^3}, \ c_{02}=\frac{(a_{\mathrm{SN}}+\nu _1) (x^*-m)^2}{(x^*-m+y^*)^3},\\&d_{10}=\frac{a_{\mathrm{SN}} {y^*}^2}{(x^*\!-\!m+y^*)^2}, d_{01}\!=\!\frac{- a_{\mathrm{SN}} (x^*\!-\!m)y^*}{(x^*-m+y^*)^2},\ d_{20}=-\frac{(1+\nu _2) (a_{\mathrm{SN}}+\nu _1) {y_2^*}^2}{(x_2^*-m+y_2^*)^3},\\&d_{11}=\frac{2 (1+\nu _2) (a_{\mathrm{SN}}+\nu _1) (x^*-m)y^*}{(x^*-m+y^*)^3}, \ d_{02}=-\frac{(1+\nu _2) (a_{\mathrm{SN}}+\nu _1) (x^*-m)^2}{(x^*-m+y^*)^3}. \end{aligned}$$

Now, using the affine transformation \(w_1=u_1\) and \(w_2=c_{10}u_1+c_{01} u_2\), the system (37) reduces to

$$\begin{aligned} \dot{w_1}= & {} w_2+\xi _{00}(\nu )+\xi _{10}(\nu ) w_1+\xi _{01}(\nu ) w_2+\frac{1}{2} \xi _{20}(\nu ) w_1^2 +\xi _{11}(\nu ) w_1 w_2\nonumber \\&+ \frac{1}{2}\xi _{02}(\nu ) w_2^2 + 0(\mid w\mid ^3),\nonumber \\ \dot{w_2}= & {} \eta _{00}(\nu )+\eta _{10}(\nu ) w_1+\eta _{01}(\nu ) w_2+\frac{1}{2} \eta _{20}(\nu ) w_1^2 +\eta _{11}(\nu ) w_1 w_2\nonumber \\&+ \frac{1}{2}\eta _{02}(\nu ) w_2^2 + 0(\mid w\mid ^3), \end{aligned}$$
(38)

where

$$\begin{aligned}&\xi _{00}(\nu )= f_1(x^*,y^*,\nu ), \ \xi _{10}(\nu )=\nu _1\frac{ c_{10} (x^*-m)^2-c_{01} {y^*}^2}{(x^*-m+y^*)^2 c_{01}},\\&\quad \xi _{01}(\nu )=-\frac{\nu _1 (x^*-m)^2}{(x^*-m+y^*)^2c_{01}}\\&\xi _{20}(\nu )= 2\left( c_{20}-\frac{c_{11} c_{10}}{c_{01}}+\frac{c_{02} c_{10}^2 }{c_{01}^2}\right) , \ \xi _{11}(\nu )= \left( \frac{c_{11}}{c_{01}}-\frac{2 c_{10} c_{02} }{c_{01}^2}\right) , \\&\quad \xi _{02}(\nu )= \frac{2 c_{02}}{c_{01}^2},\\&\eta _{00}(\nu )= c_{10} f_1(x^*,y^*,\nu )+ c_{01} f_2(x^*,y^*,\nu ), \\&\eta _{10}(\nu )= \frac{(c_{10}\nu _1-c_{01} (\nu _2 a_{\mathrm{SN}}+\nu _1+\nu _1 \nu _2))(c_{10}(x^*-m)^2-c_{01} {y^*}^2)}{(x^*-m+y^*)^2 c_{01}},\\&\eta _{01}(\nu )= -\frac{(c_{10}\nu _1-c_{01} (\nu _2 a_{\mathrm{SN}}+\nu _1+\nu _1 \nu _2))(x^*-m)^2}{(x^*-m+y^*)^2 c_{01}},\\&\eta _{20}(\nu )= 2 c_{10}\left( c_{20}-\frac{c_{11} c_{10}}{c_{01}}+\frac{c_{02} c_{10}^2 }{c_{01}^2}\right) + 2 c_{01}\left( d_{20}-\frac{d_{11} c_{10}}{c_{01}}+\frac{d_{02} c_{10}^2 }{c_{01}^2}\right) ,\\&\eta _{11}(\nu )= c_{10}\left( \frac{c_{11}}{c_{01}}-\frac{2 c_{10} c_{02} }{c_{01}^2}\right) +c_{01}\left( \frac{d_{11}}{c_{01}}-\frac{2 c_{10} d_{02} }{c_{01}^2}\right) ,\\&\eta _{02}(\nu )= \frac{2 c_{10} c_{02}}{c_{01}^2}+\frac{2 c_{01} d_{02}}{c_{01}^2}. \end{aligned}$$

The degeneracy conditions of BT bifurcation are

$$\begin{aligned} \left( \begin{array}{cc} c_{10}\ \ \ &{}c_{01}\\ d_{10}\ \ \ &{} d_{01} \end{array}\right) \ne \Theta _{2x2}, \ \ \ \xi _{20}(0)+\eta _{11}(0) \ne 0, \ \ \ \eta _{20}(0) \ne 0. \end{aligned}$$

We find that

$$\begin{aligned} \xi _{20}(0)+\eta _{11}(0)= \frac{2 r}{K}(K+\theta -3 x^*) \ne 0 \end{aligned}$$

and

$$\begin{aligned} \eta _{20}(0) = \frac{2 a_{\mathrm{SN}} (x^*-m) y^* r}{(x^*-m+y^*)^2 K}(K+\theta -3 x^*) \ne 0. \end{aligned}$$

Thus, the degeneracy conditions of BT bifurcation are satisfied. The bifurcation structure of the BT point is given by the following quantity

$$\begin{aligned} \sigma= & {} sign(\eta _{20}(0)(\xi _{20}(0)+\eta _{11}(0)))\\= & {} sign\left( \frac{4 a_{\mathrm{SN}} (x^*-m) y^* r^2}{(x^*-m+y^*)^2 K^2}(K+\theta -3 x^*)^2 \right) =1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Misra, A.K. Modeling the Effect of Prey Refuge on a Ratio-Dependent Predator–Prey System with the Allee Effect. Bull Math Biol 80, 626–656 (2018). https://doi.org/10.1007/s11538-018-0394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0394-6

Keywords

Mathematics Subject Classification

Navigation