Skip to main content
Log in

Cell-Based Model of the Generation and Maintenance of the Shape and Structure of the Multilayered Shoot Apical Meristem of Arabidopsis thaliana

  • Special Issue: Multi-scale Modeling of Tissue Growth and Shape
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

One of the central problems in animal and plant developmental biology is deciphering how chemical and mechanical signals interact within a tissue to produce organs of defined size, shape, and function. Cell walls in plants impose a unique constraint on cell expansion since cells are under turgor pressure and do not move relative to one another. Cell wall extensibility and constantly changing distribution of stress on the wall are mechanical properties that vary between individual cells and contribute to rates of expansion and orientation of cell division. How exactly cell wall mechanical properties influence cell behavior is still largely unknown. To address this problem, a novel, subcellular element computational model of growth of stem cells within the multilayered shoot apical meristem (SAM) of Arabidopsis thaliana is developed and calibrated using experimental data. Novel features of the model include separate, detailed descriptions of cell wall extensibility and mechanical stiffness, deformation of the middle lamella, and increase in cytoplasmic pressure generating internal turgor pressure. The model is used to test novel hypothesized mechanisms of formation of the shape and structure of the growing, multilayered SAM based on WUS concentration of individual cells controlling cell growth rates and layer-dependent anisotropic mechanical properties of subcellular components of individual cells determining anisotropic cell expansion directions. Model simulations also provide a detailed prediction of distribution of stresses in the growing tissue which can be tested in future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Ali O, Mirabet V, Godin C, Traas J (2014) Physical models of plant development. Annu Rev Cell Dev Biol 30:59–78

    Article  Google Scholar 

  • Allard JF, Ambrose JC, Wasteneys GO, Cytrynbaum EN (2010) A mechanochemical model explains interactions between cortical microtubules in plants. Biophys J 99(4):1082–1090

    Article  Google Scholar 

  • Amiri A, Harvey C, Buchmann A, Christley S, Shrout JD, Aranson IS, Alber M (2017) Reversals and collisions optimize protein exchange in bacterial swarms. Phys Rev E 95(3–1):032408

    Article  Google Scholar 

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341(1):95–113

    Article  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  Google Scholar 

  • Bathe K-J (1982) Finite element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bessonov N, Volpert V (2017) Deformable cell model of tissue growth. Computation 5(4):45

    Article  Google Scholar 

  • Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11(1):e1003950

    Article  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619

    Article  Google Scholar 

  • Brodland GW (2015) How computational models can help unlock biological systems. Semin Cell Dev Biol 47–48:62–73

    Article  Google Scholar 

  • Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64(18):5753–5767

    Article  Google Scholar 

  • Chickarmane V, Roeder AHK, Tarr PT, Cunha A, Tobin C, Meyerowitz EM (2010) Computational morphodynamics: a modeling framework to understand plant growth. Annu Rev Plant Biol 61:65–87

    Article  Google Scholar 

  • Christley S, Lee B, Dai X, Nie Q (2010) Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms. BMC Syst Biol 4:107

    Article  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1Gene encodes a putative receptor kinase that controls shoot and floral meristem size in arabidopsis. Cell 89(4):575–585

    Article  Google Scholar 

  • Coen E, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101(14):4728–4735

    Article  Google Scholar 

  • Corson F, Adda-Bedia M, Boudaoud A (2009a) In silico leaf venation networks: growth and reorganization driven by mechanical forces. J Theor Biol 259(3):440–448

    Article  MathSciNet  MATH  Google Scholar 

  • Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y (2009b) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci USA 106(21):8453–8458

    Article  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125(1):131–134

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  Google Scholar 

  • Daher FB, Braybrook SA (2015) How to let go: pectin and plant cell adhesion. Front Plant Sci 6:523

    Article  Google Scholar 

  • Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in arabidopsis. Proc Natl Acad Sci USA 111(40):14619–14624

    Article  Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci 103(5):1627–1632

    Article  Google Scholar 

  • Diaz de la Loza MC, Thompson BJ (2017) Forces shaping the Drosophila wing. Mech Dev 144(Pt A):23–32

    Article  Google Scholar 

  • Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50(2–3):209–222

    Article  Google Scholar 

  • Dupuy L, Mackenzie JP, Haseloff JP (2006) A biomechanical model for the study of plant morphogenesis: Coleocheate orbicularis, a 2D study species. In: Proceedings of the 5th Plant biomechanics conference, Stockholm, Sweden

  • Dupuy L, Mackenzie J, Rudge T, Haseloff J (2008) A system for modelling cell–cell interactions during plant morphogenesis. Ann Bot 101(8):1255–1265

    Article  Google Scholar 

  • Dupuy L, Mackenzie J, Haseloff J (2010) Coordination of plant cell division and expansion in a simple morphogenetic system. Proc Natl Acad Sci USA 107(6):2711–2716

    Article  Google Scholar 

  • Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503

    Article  MathSciNet  MATH  Google Scholar 

  • Erickson RO (1976) Modeling of plant growth. Annu Rev Plant Physiol 27(1):407–434

    Article  Google Scholar 

  • Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095–2104

    Article  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283(5409):1911–1914

    Article  Google Scholar 

  • Fletcher AG, Cooper F, Baker RE (2017) Mechanocellular models of epithelial morphogenesis. Philos Trans R Soc Lond B Biol Sci 372(1720):20150519

    Article  Google Scholar 

  • Fozard JA, Lucas M, King JR, Jensen OE (2013) Vertex-element models for anisotropic growth of elongated plant organs. Front Plant Sci 4:233

    Article  Google Scholar 

  • Geitmann A (2006) Experimental approaches used to quantify physical parameters at cellular and subcellular levels. Am J Bot 93(10):1380–1390

    Article  Google Scholar 

  • Gord A, Holmes WR, Dai X, Nie Q (2014) Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation. J R Soc Interface 11(99):20140631

    Article  Google Scholar 

  • Hamant O, Traas J (2010) The mechanics behind plant development. New Phytol 185(2):369–385

    Article  Google Scholar 

  • Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in arabidopsis. Science 322(5908):1650–1655

    Article  Google Scholar 

  • Heller D, Hoppe A, Restrepo S, Gatti L, Tournier AL, Tapon N, Basler K, Mao Y (2016) EpiTools: an open-source image analysis toolkit for quantifying epithelial growth dynamics. Dev Cell 36(1):103–116

    Article  Google Scholar 

  • Jönsson H, Heisler M, Reddy G V, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz E M (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21(suppl–1):i232–i240

    Article  Google Scholar 

  • Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103(5):1633–1638

    Article  Google Scholar 

  • Jönsson H, Gruel J, Krupinski P, Troein C (2012) On evaluating models in computational morphodynamics. Curr Opin Plant Biol 15(1):103–110

    Article  Google Scholar 

  • Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 7(6):e1002071

    Article  MathSciNet  Google Scholar 

  • Kursawe J, Brodskiy PA, Zartman JJ, Baker RE, Fletcher AG (2015) Capabilities and limitations of tissue size control through passive mechanical forces. PLoS Comput Biol 11(12):e1004679

    Article  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96

    Google Scholar 

  • Liu Z, Persson S, Sánchez-Rodríguez C (2015) At the border: the plasma membrane-cell wall continuum. J Exp Bot 66(6):1553–1563

    Article  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8(2):264–275

    Article  Google Scholar 

  • Louveaux M, Hamant O (2013) The mechanics behind cell division. Curr Opin Plant Biol 16(6):774–779

    Article  Google Scholar 

  • Louveaux M, Julien JD, Mirabet V, Boudaoud A, Hamant O (2016) Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci 113(30):E4294–E4303

    Article  Google Scholar 

  • Lyndon RF (1998) The shoot apical meristem: its growth and development. Cambridge University Press, Cambridge

    Google Scholar 

  • MATLAB (2018) Version 9.4 (R2018b). The MathWorks Inc., Natick, Massachusetts

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815

    Article  Google Scholar 

  • Merks RMH, Guravage M, Inzé D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155(2):656–666

    Article  Google Scholar 

  • Milde F, Tauriello G, Haberkern H, Koumoutsakos P (2014) SEM++: a particle model of cellular growth, signaling and migration. Comput Part Mech 1(2):211–227

    Article  Google Scholar 

  • Mitchell AR (1982) Finite elements: an introduction. In: volume 1, Becker EB, Carey GF, Oden JT (eds) Prentice-Hall. Int J Numer Meth Eng 18(6):954–955

  • Mjolsness E, Yosiphon G (2006) Stochastic process semantics for dynamical grammars. Ann Math Artif Intell 47(3–4):329–395

    MathSciNet  MATH  Google Scholar 

  • Morse P M (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34(1):57

    Article  MATH  Google Scholar 

  • Müller R, Borghi L, Kwiatkowska D, Laufs P, Simon R (2006) Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18(5):1188–1198

    Article  Google Scholar 

  • Nematbakhsh A, Sun W, Brodskiy PA, Amiri A, Narciso C, Xu Z, Zartman JJ, Alber M (2017) Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Comput Biol 13(5):e1005533

    Article  Google Scholar 

  • Newman TJ (2005) Modeling multicellular systems using subcellular elements. Math Biosci Eng 2(3):613–624

    Article  MathSciNet  MATH  Google Scholar 

  • Newman T (2007) Modeling multicellular structures using the subcellular element model. In: Single-cell-based models in biology and medicine, pp 221–239. Springer

  • Niklas KJ (1977) Applications of finite element analyses to problems in plant morphology. Ann Bot 41:133–153

    Article  Google Scholar 

  • Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319(5861):294

    Article  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495

    Article  Google Scholar 

  • Pathmanathan P, Cooper J, Fletcher A, Mirams G, Murray P, Osborne J, Pitt-Francis J, Walter A, Chapman SJ (2009) A computational study of discrete mechanical tissue models. Phys Biol 6(3):036001

    Article  Google Scholar 

  • Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016) Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci 113(41):E6298–E6306

    Article  Google Scholar 

  • Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193(3):549–569

    Article  Google Scholar 

  • Rasmussen CG, Wright AJ, Müller S (2013) The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J 75(2):258–269

    Article  Google Scholar 

  • Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310(5748):663–667

    Article  Google Scholar 

  • Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131(17):4225–4237

    Article  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255

    Article  Google Scholar 

  • Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016) DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci 113(41):E6307–E6315

    Article  Google Scholar 

  • Routier-Kierzkowska A-L, Smith RS (2013) Measuring the mechanics of morphogenesis. Curr Opin Plant Biol 16(1):25–32

    Article  Google Scholar 

  • Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM (2014a) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife 3:e01967

    Article  Google Scholar 

  • Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM (2014b) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife 3:e01967

    Article  Google Scholar 

  • Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM (2014c) Physical forces regulate plant development and morphogenesis. Curr Biol 24(10):R475–83

    Article  Google Scholar 

  • Sandersius S, Newman T (2008) Modeling cell rheology with the subcellular element model. Phys Biol 5(1):015002

    Article  Google Scholar 

  • Sandersius S, Chuai M, Weijer CJ, Newman T (2011a) Correlating cell behavior with tissue topology in embryonic epithelia. PLoS ONE 6(4):e18081

    Article  Google Scholar 

  • Sandersius S, Weijer C, Newman T (2011b) Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys Biol 8(4):045007

    Article  Google Scholar 

  • Schiff (1968) Quantum mechanics. McGraw-Hill Education (India) Pvt Limited

  • Smith LG (2001) Cell division: plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2(1):33

    Article  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci 103(5):1301–1306

    Article  Google Scholar 

  • Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV (2018) Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 14(4):e1007351

    Article  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sweet CR, Chatterjee S, Xu Z, Bisordi K, Rosen ED, Alber M (2011) Modelling platelet-blood flow interaction using the subcellular element Langevin method. J R Soc Interface 8(65):1760–1771

    Article  Google Scholar 

  • Tanaka S (2015) Simulation frameworks for morphogenetic problems. Computation 3(2):197–221

    Article  Google Scholar 

  • Truskina J, Vernoux T (2018) The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr Opin Plant Biol 41:83–88

    Article  Google Scholar 

  • Uyttewaal M, Burian Aand Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149(2):439–451

  • Van Liedekerke P, Palm MM, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech 2(4):401–444

    Article  Google Scholar 

  • Vermolen F, Gefen A (2012) A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies. Biomech Model Mechanobiol 11(1–2):183–195

    Article  Google Scholar 

  • Vollmer J, Casares F, Iber D (2017) Growth and size control during development. Open Biol 7(11):170190. https://doi.org/10.1098/rsob.170190

    Article  Google Scholar 

  • Williamson RE (1990) Alignment of cortical microtubules by anisotropic wall stresses. Funct Plant Biol 17(6):601–613

    Article  MathSciNet  Google Scholar 

  • Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J (2005) Optical rheology of biological cells. Phys Rev Lett 94(9):098103

    Article  Google Scholar 

  • Wu Z, Xu Z, Kim O, Alber M (2014) Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow. Philos Trans A Math Phys Eng. Sci 372(2021):20130380

    Article  MathSciNet  MATH  Google Scholar 

  • Xie M, Tataw M, Venugopala Reddy G (2009) Towards a functional understanding of cell growth dynamics in shoot meristem stem-cell niche. Semin Cell Dev Biol 20(9):1126–1133

    Article  Google Scholar 

  • Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137(21):3581–3589

    Article  Google Scholar 

  • Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25(19):2025–2030

    Article  Google Scholar 

  • Yadav RK, Tavakkoli M, Xie M, Girke T, Reddy GV (2014) A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141(13):2735–2744

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support from the National Science Foundation Grant DMS-1762063 through the joint NSF DMS/NIH NIGMS Initiative to Support Research at the Interface of the Biological and Mathematical Sciences. G.V.R. was also partially supported by the National Science Foundation Grant IOS-1456725 and RSAP-AES mission funding to GVR. CGR acknowledges funding from National Science Foundation Grant MCB-1716972. The authors thank Andrew Whitaker for his invaluable help with transferring computational code to C++ language and code optimization. The authors thank Dr. Weitao Chen for her invaluable help with many computational problems as well as insightful discussions about model development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Alber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 229 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banwarth-Kuhn, M., Nematbakhsh, A., Rodriguez, K.W. et al. Cell-Based Model of the Generation and Maintenance of the Shape and Structure of the Multilayered Shoot Apical Meristem of Arabidopsis thaliana. Bull Math Biol 81, 3245–3281 (2019). https://doi.org/10.1007/s11538-018-00547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-00547-z

Keywords

Mathematics Subject Classification

Navigation