Skip to main content
Log in

Propagation of Extrinsic Fluctuations in Biochemical Birth–Death Processes

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biochemical reactions are often subject to a complex fluctuating environment, which means that the corresponding reaction rates may themselves be time-varying and stochastic. If the environmental noise is common to a population of downstream processes, then the resulting rate fluctuations will induce statistical correlations between them. In this paper we investigate how such correlations depend on the form of environmental noise by considering a simple birth–death process with dynamical disorder in the birth rate. In particular, we derive expressions for the second-order statistics of two birth–death processes evolving in the same noisy environment. We find that these statistics not only depend on the second-order statistics of the environment, but the full generator of the process describing it, thus providing useful information about the environment. We illustrate our theory by considering applications to stochastic gene transcription and cell sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson DF, Kurtz TG (2015) Stochastic analysis of biochemical systems, vol 1. Stochastics in biological systems. Springer, Berlin

    Book  Google Scholar 

  • Aymoz D, Wosika V, Durandau E, Pelet S (2016) Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters. Nat Commun 7:11304

    Article  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 205:1578–1579

    Google Scholar 

  • Brémaud P (2013) Markov chains: Gibbs fields, Monte Carlo simulation, and queues, vol 31. Springer, Berlin

    MATH  Google Scholar 

  • Bressloff PC (2017) Stochastic switching in biology: from genotype to phenotype. J Phys A 50:133001

    Article  MathSciNet  Google Scholar 

  • Chen L, Wang R, Zhou T, Aihara K (2005) Noise-induced cooperative behavior in a multicell system. Bioinformatics 21:2722–2729

    Article  Google Scholar 

  • Cookson NA, Mather WH, Danino T, Mondragon-Palomino O, Williams RJ, Tsimring LS, Hasty J (2014) Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol 7:561–561

    Article  Google Scholar 

  • Dattani J, Barahona M (2017) Stochastic models of gene transcription with upstream drives: exact solution and sample path characterization. J R Soc Interface 14:20160833

    Article  Google Scholar 

  • Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Soc B 46:353–388

    MATH  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  Google Scholar 

  • Gardiner CW (2009) Handbook of stochastic methods, 4th edn. Springer, Berlin

    MATH  Google Scholar 

  • Gupta A, Milias-Argeitis A, Khammash M (2017) Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate. J R Soc Interface 14:20170311

    Article  Google Scholar 

  • Hilfinger A, Paulsson J (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc Natl Acad Sci USA 108:12167–12172

    Article  Google Scholar 

  • Hilfinger A, Norman TM, Vinnicombe G, Paulsson J (2016a) Constraints on fluctuations in sparsely characterized biological systems. Phys Rev Lett 116:058101

    Article  Google Scholar 

  • Hilfinger A, Norman T, Paulsson J (2016b) Exploiting natural fluctuations to identify kinetic mechanisms in sparsely characterized systems. Cell Syst 2:251–259

    Article  Google Scholar 

  • Hufton PG, Lin YT, Galla T, McKane AJ (2016) Intrinsic noise in systems with switching environments. Phys Rev E 93:052119

    Article  Google Scholar 

  • Kepler TB, Elston TC (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136

    Article  Google Scholar 

  • Kifer Y (2009) Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging. In: Memoirs of the AMS 201 (944)

    Article  MathSciNet  Google Scholar 

  • Kreyszig E (1989) Introductory functional analysis with applications, vol 81. Wiley, New York

    MATH  Google Scholar 

  • Kurtz TG (1976) Limit theorems and diffusion approximations for density dependent Markov chains. Math Prog Stud 5:67–78

    Article  MathSciNet  Google Scholar 

  • Levien E, Bressloff PC (2016) A stochastic hybrid framework for obtaining statistics of many random walkers in a switching environment. Multiscale Model Simul 14:1417–1433

    Article  MathSciNet  Google Scholar 

  • Norman TM, Lord ND, Paulsson J, Losick R (2015) Stochastic switching of cell fate in microbes. Annu Rev Microbiol 69:381–403

    Article  Google Scholar 

  • Ohno M, Karagiannis P, Taniguchi Y (2014) Protein expression analyses at the single cell level. Molecules 19:13932–13947

    Article  Google Scholar 

  • Rhee A, Cheong R, Levchenko A (2014) Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Proc Natl Acad Sci 11:17330–17335

    Article  Google Scholar 

  • Sánchez A, Garcia HG, Jones D, Phillips R, Kondev J (2011) Effect of promoter architecture on the cell-to-cell variability in gene expression. PLoS Comp Biol 7(3):e1001100

    Article  Google Scholar 

  • Seger J, Brockman H (1987) What is bet-hedging? In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology, vol 4. Oxford University Press, Oxford, pp 182–211

    Google Scholar 

  • Thattai M, Van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523–530

    Article  Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Waters CM, Basser BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev 21:319–346

    Article  Google Scholar 

  • Weiss R, Knight TF (2000) Engineered communications for microbial robotics. DNA 6:13–17

    MATH  Google Scholar 

  • Zhou T, Chen L, Aihara K (2015) Molecular communication through stochastic synchronization induced by extracellular fluctuations. Phys Rev Lett 95:178103

    Article  Google Scholar 

  • Zwanzig R (1990) Rate processes with dynamical disorder. Acc Chem Res 23:148–152

    Article  Google Scholar 

Download references

Acknowledgements

PCB was supported by the National Science Foundation (DMS-1613048). EL was supported by the National Science Foundation (DMS-RTG 1148230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Bressloff.

Appendix: Continuous Environmental Noise

Appendix: Continuous Environmental Noise

One of the useful features of the method developed in our paper is that a similar analysis can be applied to the case of the environmental variable \(\xi (t)\) being a continuous stochastic process \(X(t)\in \varOmega \subset {{\mathbb {R}}}\), satisfying the SDE

$$\begin{aligned} \mathrm{d}X=F(X)\mathrm{d}t+\sqrt{2D}\mathrm{d}W(t), \end{aligned}$$
(58)

with W(t) a Wiener process:

$$\begin{aligned} \langle W(t)\rangle =0,\quad \langle W(t)W(t')\rangle =\min (t,t'). \end{aligned}$$

As a further simplification, we will assume that X(t) is a stationary process with mean \({\overline{X}}\) and covariance

$$\begin{aligned} \varSigma (\tau ):=\langle (X(t)-{\overline{X}})(X(t+\tau )-{\overline{X}})\rangle = \varSigma _0 \mathrm {e}^{-\tau /\tau _c}, \end{aligned}$$
(59)

where \(\tau _c\) is the correlation time. For example, if X(t) evolves according to an Ornstein-Uhlnebeck process for which \(F(X)=-\eta X\) in Eq. (58), then \({\overline{X}}=0\), \(\tau _c=1/\eta \) and \(\varSigma _0=D/\eta \) (Gardiner 2009). The discrete probability distribution \(q_j(t)\) evolving according to the master Eq. (15) is replaced by the probability density \(q(x,t)dx={{\mathbb {P}}}[x<X(t)<x+dx]\), which satisfies the Fokker–Planck equation

$$\begin{aligned} \frac{\partial q}{\partial t}={{\mathbb {L}}}_x q, \end{aligned}$$
(60)

where \(L_x\) is the generator of the forward Fokker–Planck equation for the SDE (58), which is given by the differential operator

$$\begin{aligned} {{\mathbb {L}}}_x=-\frac{\partial }{\partial x}F(x)+D\frac{\partial ^2}{\partial x^2}, \end{aligned}$$
(61)

which is supplemented by appropriate boundary conditions on \(\partial \varOmega \). The analysis now proceeds along similar lines to Sects. 3 and 4, except that the matrix generator \(\mathbf{Q}\) is replaced by the differential operator \({{\mathbb {L}}}_x\).

The first step is to consider a single BD process and introduce the joint probability density

$$\begin{aligned}&{{\mathcal {P}}}({{\mathbf {p}}},x,t)d{{\mathbf {p}}}dx \\&\quad ={{\mathbb {P}}}[{{\mathbf {p}}}<\mathbf{P}(t)<{{\mathbf {p}}}+d{{\mathbf {p}}}, x<X(t)<x+dx], \end{aligned}$$

which evolves according to the CK equation (see also Eq. 24)

$$\begin{aligned} \frac{\partial {{\mathcal {P}}}}{\partial t}=-\sum _{m\ge 0}\frac{\partial }{\partial p_m}V_m({{\mathbf {p}}},x){\mathcal P}({{\mathbf {p}}},x,t)+{{\mathbb {L}}}_{x}{{\mathcal {P}}}({{\mathbf {p}}},x,t), \end{aligned}$$
(62)

where \(V_m\) is given by Eq. (21). Introduce the first-order moments of \({{\mathcal {P}}}\),

$$\begin{aligned} P_{m}(x,t)=\int p_m{{\mathcal {P}}}({{\mathbf {p}}},x,t)d{{\mathbf {p}}}, \end{aligned}$$

Multiplying both sides of (62) by \(p_m\) and then integrating with respect to \({{\mathbf {p}}}\) gives the effective differential CK equation

$$\begin{aligned} \frac{\partial P_{m}}{\partial t}&=x [\alpha _0-\alpha _1(m-1)] P_{m-1}+\beta (m+1)P_{m+1} \nonumber \\&\qquad -[x(\alpha _0-\alpha _1 m)+\beta m]P_{m} +{\mathbb L}_{x}P_{m}. \end{aligned}$$
(63)

We can now derive an equation for the first-order moments

$$\begin{aligned} z(x,t)=\sum _{m\ge 0}^NmP_{m}(x,t). \end{aligned}$$

Multiplying both sides of (63) by m and summing over m yields

$$\begin{aligned} \frac{\partial z}{\partial t}=x(\alpha _0 \rho (x)-\alpha _1 z(x,t))-\beta z(x,t)+{{\mathbb {L}}}_xz(x,t), \end{aligned}$$
(64)

where \(\rho (x)\) is the stationary density of the stochastic process X(t). Taking the limit \(t\rightarrow \infty \) then yields the time-independent equation

$$\begin{aligned}{}[{{\mathbb {L}}}_x-\alpha _1x -\beta ]z^{\infty }(x)=-x\alpha _0 \rho (x). \end{aligned}$$
(65)

This can be inverted to give the integral solution

$$\begin{aligned} z^{\infty }(x)=\alpha _0\int _{\varOmega }G_1(x,x') x'\rho (x')\mathrm{d}x', \end{aligned}$$
(66)

where \(G_k(x,x')\) is the Green’s function defined according to the equation

$$\begin{aligned}{}[{{\mathbb {L}}}_{x}-k(\alpha _1x +\beta )]G_k(x,x')=-\delta (x-x'), \end{aligned}$$
(67)

together with boundary conditions on \(\partial \varOmega \).

Now consider two identical BD processes \(Z_1(t)\) and \(Z_2(t)\) as in Sect. 4. Introduce the joint probability density

$$\begin{aligned}&{{\mathcal {P}}}({{\mathbf {p}}}^1,{{\mathbf {p}}}^2,x,t)d{{\mathbf {p}}}^1d{{\mathbf {p}}}^2dx \\&\quad ={{\mathbb {P}}}[({{\mathbf {p}}}^1,{{\mathbf {p}}}^2)<( \mathbf{P}^1(t),\mathbf{P}^2(t))<({{\mathbf {p}}}^1+d{{\mathbf {p}}}^1,{{\mathbf {p}}}^2+d{{\mathbf {p}}}^2), x<X(t)<x+dx], \end{aligned}$$

The differential CK Eq. (37) becomes

$$\begin{aligned} \frac{\partial {{\mathcal {P}}}}{\partial t}=-\sum _{r=1,2}\sum _{m\ge 0}\frac{\partial }{\partial p_m^r}V_m({{\mathbf {p}}}^r,x){\mathcal P}({{\mathbf {p}}}^1,{{\mathbf {p}}}^2,x,t)+{{\mathbb {L}}}_{x}{{\mathcal {P}}}({{\mathbf {p}}}^1,{{\mathbf {p}}}^2,x,t), \end{aligned}$$
(68)

where \(V_m\) is given by Eq. (21). Define the second-order cross-moments of the density \({{\mathcal {P}}}_n\) according to

$$\begin{aligned} C_{m_1m_2}(x,t)= \int p^1_{m_1}p^2_{m_2}{\mathcal P}({{\mathbf {p}}}^1,{{\mathbf {p}}}^2,x,t)d{{\mathbf {p}}}^1d{{\mathbf {p}}}^2 \end{aligned}$$
(69)

These satisfy the CK equation

$$\begin{aligned} \frac{\partial C_{m_1m_2}}{\partial t}&=x[\alpha _0-\alpha _1 (m_1-1)] C_{m_1-1,m_2}(x,t)+\beta (m_1+1)C_{m_1+1,m_2}(x,t) \nonumber \\&\quad +x[\alpha _0-\alpha _1(m_2-1)]C_{m_1,m_2-1}(x,t)+\beta (m_2+1)C_{m_1,m_2+1}(x,t)\nonumber \\&\quad -[x(2\alpha _0 -\alpha _1 (m_1+m_2)) +\beta (m_1+m_2)]C_{m_1m_2}(x,t)\nonumber \\&\quad +{{\mathbb {L}}}_xC_{m_1m_2}(x,t). \end{aligned}$$
(70)

We can now derive equations for the second-order moments

$$\begin{aligned} {\mu }(x,t)=\sum _{m_1\ge 0}\sum _{m_2\ge 0}m_1m_2C_{m_1m_2}(x,t), \end{aligned}$$
(71)

by multiplying both sides of (70) by \(m_1m_2\) and summing over \(m_1\) and \(m_2\). This yields

$$\begin{aligned} \frac{\partial {\mu }}{\partial t}=2x (\alpha _0 z(x,t)-\alpha _1\mu (x,t)) -2\beta {\mu }(x,t)+{\mathbb L}_x{\mu }(x,t). \end{aligned}$$
(72)

Taking the limit \(t\rightarrow \infty \), we obtain the time-independent equation

$$\begin{aligned}{}[{{\mathbb {L}}}_x-2(\alpha _1x +\beta ) ]\mu ^{\infty }(x)=-2x\alpha _0z^{\infty }(x). \end{aligned}$$
(73)

This can be inverted to give the integral solution

$$\begin{aligned} \mu ^{\infty }(x)=2\alpha _0\int _{\varOmega }G_2(x,y) yz^{\infty }(y)\mathrm{d}y . \end{aligned}$$
(74)

Finally, substituting for \(z^{\infty }\) using Eq. (66), we obtain the integral solution

$$\begin{aligned} \mu _{\infty }:= \int _{\varOmega }\mu ^{\infty }(x)\mathrm{d}x=2\alpha _0^2\int _{\varOmega }\left[ \int _{\varOmega } \int _{\varOmega } G_2(x,y)yG_1(y,x') x '\rho (x')\mathrm{d}x'\mathrm{d}y \right] dx.\nonumber \\ \end{aligned}$$
(75)

In the special case \(\alpha _1=0\),

$$\begin{aligned} \mu _{\infty }= \frac{\alpha _0^2}{\beta }\int _{\varOmega }\int _{\varOmega } x G(x,x')x'\rho (x')\mathrm{d}x'\mathrm{d}x, \end{aligned}$$
(76)

where

$$\begin{aligned}{}[{{\mathbb {L}}}_{x}-\beta ]G(x,x')=-\delta (x-x'). \end{aligned}$$
(77)

Equations (75) and (76) are the analogs of Eqs. (44) and (45).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressloff, P.C., Levien, E. Propagation of Extrinsic Fluctuations in Biochemical Birth–Death Processes. Bull Math Biol 81, 800–829 (2019). https://doi.org/10.1007/s11538-018-00538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-00538-0

Keywords

Navigation