Skip to main content
Log in

Trend to Equilibrium for a Reaction–Diffusion System Modelling Reversible Enzyme Reaction

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A spatio-temporal evolution of chemicals appearing in a reversible enzyme reaction and modelled by a four-component reaction–diffusion system with the reaction terms obtained by the law of mass action is considered. The large time behaviour of the system is studied by means of entropy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology (chapter 3), 4th edn. Routledge, Garland Science

    Google Scholar 

  • Arnold A, Carrillo JA, Desvillettes L, Dolbeault J, Jüngel A, Lederman C, Markowich PA, Toscani G, Villani C (2004) Entropies and equilibria of many-particle systems: an essay on recent research. Monatshefte für Math 142(1–2):35–43

    Article  MathSciNet  MATH  Google Scholar 

  • Bothe D, Pierre M (2010) Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate. J Math Anal Appl 368(1):120–132

    Article  MathSciNet  MATH  Google Scholar 

  • Bothe D, Rolland G (2015) Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities. Acta Appl Math 139(1):25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Breden M, Desvillettes L, Fellner K (2017) Smoothness of moments of the solutions of discrete coagulation equations with diffusion. Monatshefte für Math 183(3):437–463

    Article  MathSciNet  MATH  Google Scholar 

  • Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    Article  Google Scholar 

  • Burke MA, Maini PK, Murray JD (1993) Suicide substrate reaction-diffusion equations: varying the source. IMA J Math Appl Med Biol 10:97–114

    Article  MATH  Google Scholar 

  • Carrillo JA, Jüngel A, Markowich PA, Toscani G, Unterreiter A (2001) Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Math 133(1):1–82

    Article  MathSciNet  MATH  Google Scholar 

  • Cornejo E, Abreu N, Komeili A (2014) Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol 26:132–138

    Article  Google Scholar 

  • Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Desvillettes L, Fellner K (2006) Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J Math Anal Appl 319(1):157–176

    Article  MathSciNet  MATH  Google Scholar 

  • Desvillettes L, Fellner K (2008) Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Rev Matemática Iberoam 24:407–431

    Article  MathSciNet  MATH  Google Scholar 

  • Desvillettes L, Fellner K (2014) Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry. Syst Model Optim IFIP AICT 443:96–104

    Article  MATH  Google Scholar 

  • Desvillettes L, Fellner K (2015) Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion. Math Meth Appl Sci 38:3432–3443

    Article  MathSciNet  MATH  Google Scholar 

  • Desvillettes L, Fellner K, Pierre M, Vovelle J (2007) About global existence for quadratic systems of reaction-diffusion. J Adv Nonlinear Stud 7:491–511

    MATH  Google Scholar 

  • Eliaš J (2015) Mathematical model of the role and temporal dynamics of protein p53 after drug-induced DNA damage. Ph.D. thesis, Pierre and Marie Curie University

  • Fellner K, Prager W, Tang BQ (2017) The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks. Kinet Relat Models 10(4):1055–1087

    Article  MathSciNet  MATH  Google Scholar 

  • Fellner K, Tang BQ (2017) Explicit exponential convergence to equilibrium for nonlinear reaction-diffusion systems with detailed balance condition. Nonlinear Anal 159:145–180

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzgibbon WB, Hollis SL, Morgan JJ (1997) Stability and Lyapunov functions for reaction-diffusion systems. SIAM J Math Anal 28(3):595–610

    Article  MathSciNet  MATH  Google Scholar 

  • Gorban AN, Gorban PA, Judge G (2010) Entropy: the Markov ordering approach. Entropy 12(5):1145–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Kalachev LV, Kaper HG, Kaper TJ, Popovic N, Zagaris A (2007) Reduction for Michaelis–Menten–Henri kinetics in the presence of diffusion. Electronic J Differ Equ Conf 16:155–184

    MathSciNet  MATH  Google Scholar 

  • Kernevez JP, Thomas D (1975) Numerical analysis and control of some biochemical systems. Appl Math Optim 1(3):222–285

    Article  MathSciNet  MATH  Google Scholar 

  • Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11(6):414–426

    Article  Google Scholar 

  • Ladyzhenskaya OA, Solonnikov VA, Uraľtseva NN (1968) Linear and quasi-linear equations of parabolic type, vol 23. American Mathematical Soc, Providence

    Google Scholar 

  • Maini PK, Burke MA, Murray JD (1991) On the quasi-steady-state assumption applied to michaelis-menten and suicide substrate reactions with diffusion. Philos Trans R Soc Lond A Math Phys Eng Sci 337(1646):299–306

    Article  MATH  Google Scholar 

  • Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  • Mielke A, Haskovec J, Markowich PA (2014) On uniform decay of the entropy for reaction-diffusion systems. J Dyn Differ Equ 27(3):897–928

    MathSciNet  MATH  Google Scholar 

  • Naka T, Sakamoto N (1992) Kinetics of membrane-bound enzymes: Validity of quasi-steady-state approximation for a Michaelis–Menten-type reaction. J Membr Sci 74(1):159–170

    Article  Google Scholar 

  • Ni, W-M (2011) The Mathematics of Diffusion. Society for Industrial and Applied Mathematics

  • Palsson BØ (2011) Systems biology: simulation of dynamic network states. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pao CV (1980) Mathematical analysis of enzyme-substrate reaction diffusion in some biochemical systems. Nonlinear Anal Theory Methods Appl 4(2):369–392

    Article  MathSciNet  MATH  Google Scholar 

  • Perthame B (2015) Parabolic equations in biology: Growth, reaction, movement and diffusion. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing

  • Pierre M (2010) Global existence in reaction-diffusion systems with control of mass: a survey. Milan J Math 78(2):417–455

    Article  MathSciNet  MATH  Google Scholar 

  • Pierre M, Schmitt D (1997) Blow-up in reaction diffusion systems with dissipation of mass. J Math Anal 28(2):259–269

    MathSciNet  MATH  Google Scholar 

  • Roubíček T (2013) Nonlinear Partial Differential Equations with Application, vol. 153 of Intl. Ser. Numer. Math. Birkhäuser Basel, 2nd edn

  • Schmidt-Dannert C, Lopez-Gallego F (2016) A roadmap for biocatalysis—functional and spatial orchestration of enzyme cascades. Microb Biotechnol 9(5):601–609

    Article  Google Scholar 

  • Schnell S (2014) Validity of the Michaelis–Menten equation—steady-state or reactant stationary assumption: that is the question. FEBS J 281(2):464–472

    Article  Google Scholar 

  • Schnell S, Maini PK (2000) Enzyme kinetics at high enzyme concentration. Bull Math Biol 62(3):483–499

    Article  MATH  Google Scholar 

  • Schnell S, Maini PK (2002) Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math Comput Model 35(1–2):137–144

    Article  MathSciNet  MATH  Google Scholar 

  • Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31(3):446–477

    Article  MathSciNet  MATH  Google Scholar 

  • Villani C (2003) Topics in optimal transportation. American Mathematical Soc, Providence

    Book  MATH  Google Scholar 

  • Yudushkin IA, Schleifenbaum A, Kinkhabwala A, Neel BG, Schultz C, Bastiaens PIH (2007) Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315(5808):115–119

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. The author would like to thank to Bao Q. Tang and Benoît Perthame for useful discussion and suggestions. He is grateful to the reviewers of the manuscript for their constructive input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Eliaš.

Appendices

Appendix A: Duality Principle

We recall a duality principle (Pierre 2010; Pierre and Schmitt 1997) which is used to show \(L^2(\log L)^2\) and \(L^2\) bounds, respectively, for the solution of the system (4)–(6). Note that a more general result is proved in Pierre (2010), Chap. 6, than presented here.

Lemma 4.1

(Duality principle) Let \(0<T<\infty \) and \(\Omega \) be a bounded, open and regular (e.g. \(C^2\)) subset of \(\mathbb {R}^d\). Consider a nonnegative weak solution u of the problem

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t u - \Delta (A u) \le 0, \\&\nabla (A u) \cdot \nu = 0, \quad \forall t \in I, \; x \in \partial \Omega , \\&u(0,x) = u_0(x), \\ \end{aligned} \right. \end{aligned}$$
(53)

where we assume that \(0< A_1 \le A = A(t,x) \le A_2 < \infty \) is smooth, \(A_1\) and \(A_2\) are strictly positive constants, \(u_0 \in L^2(\Omega )\) and \(\int u_0 \ge 0\). Then,

$$\begin{aligned} \Vert u \Vert _{L^2(Q_T)} \le C \Vert u_0 \Vert _{L^2(\Omega )} \end{aligned}$$
(54)

where \(C=C(\Omega , A_1, A_2, T)\).

Proof

Let us consider an adjoint problem: find a nonnegative function \(v \in C(I;L^2(\Omega ))\) which is regular in the sense that \(\partial _t v, \Delta v \in L^2(Q_T)\) and satisfies

$$\begin{aligned} \left\{ \begin{aligned}&- \partial _t v - A \Delta v = F, \\&\nabla v \cdot \nu = 0, \quad \forall t \in I, \; x \in \partial \Omega , \\&v(T,x) = 0, \\ \end{aligned} \right. \end{aligned}$$
(55)

for \(F = F(t,x) \in L^2(Q_T)\) nonnegative. The existence of such v follows from the classical results on parabolic equations (Ladyzhenskaya et al. 1968).

By combining equations for u and v, we can readily check that

$$\begin{aligned} -\dfrac{\text {d}}{\, \text {d}t} \int _{\Omega } u v \ge \int _{\Omega } u F \end{aligned}$$

which, by using \(v(T)=0\), yields

$$\begin{aligned} \int _{Q_T} u F \le \int _{\Omega } u_0 v_0. \end{aligned}$$
(56)

By multiplying equation for v in (55) by \(-\Delta v\), integrating per partes and using the Young inequality, we obtain

$$\begin{aligned} -\dfrac{1}{2}\dfrac{\text {d}}{\, \text {d}t} \int _{\Omega } \vert \nabla v \vert ^2 + \int _{\Omega } A (\Delta v)^2 = - \int _{\Omega } F \Delta v \le \int _{\Omega } \dfrac{F^2}{2A} + \dfrac{A}{2}(\Delta v)^2, \end{aligned}$$

i.e.

$$\begin{aligned} -\dfrac{\text {d}}{\, \text {d}t} \int _{\Omega } \vert \nabla v \vert ^2 + \int _{\Omega } A (\Delta v)^2 \le \int _{\Omega } \dfrac{F^2}{A}. \end{aligned}$$

Integrating this over [0, T] and using \(v(T)=0\) gives

$$\begin{aligned} \int _{\Omega } \vert \nabla v_0 \vert ^2 + \int _{Q_T} A (\Delta v)^2 \le \int _{Q_T} \dfrac{F^2}{A}. \end{aligned}$$

Thus, we obtain the a-priori bounds

$$\begin{aligned} \Vert \nabla v_0 \Vert _{L^2(\Omega ,\mathbb {R}^d)} \le \left\| \dfrac{F}{\sqrt{A}} \right\| _{L^2(Q_T)} \quad \text {and} \quad \Vert \sqrt{A} \Delta v \Vert _{L^2(\Omega )} \le \left\| \dfrac{F}{\sqrt{A}} \right\| _{L^2(Q_T)}. \end{aligned}$$
(57)

From the equation for v, we can write (again, by integrating this equation over \(\Omega \) and [0, T] and using \(v(T)=0\))

$$\begin{aligned} \int _{\Omega } v_0 = \int _{Q_T} A \Delta v + F. \end{aligned}$$

Hence,

$$\begin{aligned} \begin{aligned} \int _{\Omega } v_0 = \int _{Q_T} \sqrt{A} \left( \sqrt{A} \Delta v + \dfrac{F}{\sqrt{A}}\right)&\le \Vert \sqrt{A} \Vert _{L^2(Q_T)} \left\| \sqrt{A}\Delta v + \dfrac{F}{\sqrt{A}} \right\| _{L^2(Q_T)} \\&\le 2 \Vert \sqrt{A} \Vert _{L^2(Q_T)} \left\| \dfrac{F}{\sqrt{A}} \right\| _{L^2(Q_T)}, \end{aligned} \end{aligned}$$
(58)

which follows from the Hölder inequality and (57).

To conclude the proof, let us return to (56) and write

$$\begin{aligned} \begin{aligned} 0 \le \int _{Q_T} u F \le \int _{\Omega } u_0 v_0&= \int _{\Omega } u_0( v_0 - \overline{v_0}) + u_0\overline{v_0}\\&\le \Vert u_0 \Vert _{L^2(\Omega )}\Vert v_0 - \overline{v_0} \Vert _{L^2(\Omega )} + \int _{\Omega } \overline{u_0} v_0 \\&\le C(\Omega ) \Vert u_0 \Vert _{L^2(\Omega )} \Vert \nabla v_0 \Vert _{L^2(\Omega ,\mathbb {R}^d)} + \overline{u_0} \int _{\Omega } v_0, \end{aligned} \end{aligned}$$

where we have used the Hölder and Poincaré-Wirtinger inequalities, respectively. Recall that \(\overline{v} = \dfrac{1}{\vert \Omega \vert } {\displaystyle \int _{\Omega } v \, \text {d}x}.\) The norm of the gradient \(v_0\) can be estimated by (57) and the last remaining integral by (58) so that we obtain

$$\begin{aligned} \int _{Q_T} u F \le \left( C(\Omega ) \Vert u_0 \Vert _{L^2(\Omega )} + 2\overline{u_0} \Vert \sqrt{A} \Vert _{L^2(Q_T)} \right) \left\| \dfrac{F}{\sqrt{A}} \right\| _{L^2(Q_T)}, \end{aligned}$$
(59)

which holds true for any \(F \in L^2(Q_T)\). Thus, for \(F = Au\) we can finally write

$$\begin{aligned} \Vert \sqrt{A}u\Vert _{L^2(Q_T)} \le C(\Omega ) \Vert u_0 \Vert _{L^2(\Omega )} + 2 \overline{u_0} \Vert \sqrt{A} \Vert _{L^2(Q_T)} \end{aligned}$$
(60)

and deduce (54) by using the boundedness of A, i.e. \(A_1 \le A(t,x) \le A_2\). \(\square \)

We remark that, by construction, A(tx) in (23) is not smooth but \(L^{\infty }\) only. We refer to Breden et al. (2017) for the corresponding existence and regularity result for the adjoint problem (55).

Appendix B: Inequality (48)

In this section, we give a full proof of the inequality (48). We recall that all the summations below go for \(i \in \{S,E,C,P\}\), i.e. \(\sum = \sum _{i \in \{S,E,C,P\}}\).

We start by noting that that the conservation law (39), reflecting the ansatz (40) and the substitution (45), namely

$$\begin{aligned} N_{E,\infty }^2 + N_{C,\infty }^2= & {} N_{E,\infty }^2(1+\mu _E)^2 + \overline{\delta _E^2}+ N_{C,\infty }^2(1+\mu _C)^2 + \overline{\delta _C^2}, \end{aligned}$$
(61)
$$\begin{aligned} N_{S,\infty }^2 + N_{C,\infty }^2 + N_{P,\infty }^2= & {} N_{S,\infty }^2(1+\mu _S)^2 + \overline{\delta _S^2}+ N_{C,\infty }^2(1+\mu _C)^2 + \overline{\delta _C^2}\nonumber \\&+\, N_{P,\infty }^2(1+\mu _P)^2 + \overline{\delta _P^2}, \end{aligned}$$
(62)

possesses restrictions on the signs of \(\mu _i\)’s. In particular, we remark that

  1. i)

    \(\forall i \in \{S,E,C,P\}\), \(-1 \le \mu _i \le \mu _{i,max}\) where \(\mu _{i,max}\) depends on \(\mathbf {n_{\infty }}\);

  2. ii)

    the conservation law (61) excludes the case when \(\mu _E >0\) and \(\mu _C >0\), since in this case \(\overline{N_E}> N_{E,\infty }\) and \(\overline{N_C}> N_{C,\infty }\) and we deduce from (39), (61) and the Jensen inequality \( \overline{N_i^2} \ge \overline{N_i}^2\), that

    $$\begin{aligned} M_1 = \overline{N_E^2} + \overline{N_C^2} \ge \overline{N_E}^2 + \overline{N_C}^2 > N_{E,\infty }^2 + N_{C,\infty }^2 = M_1, \end{aligned}$$

    which is a contradiction;

  3. iii)

    analogously, the conservation law (62) excludes the case when \(\mu _S >0\), \(\mu _C >0\) and \(\mu _P >0\);

  4. iv)

    for \(-1 \le \mu _E, \mu _C \le 0\), the conservation law (61) implies \(N_{E,\infty }^2 \mu _E^2 + N_{C,\infty }^2 \mu _C^2 \le \sum \overline{\delta _i^2}\), since for any \(s \in [-1,0]\) we have \(-1 \le s \le -s^2 \le 0\) and we can deduce from (61) that

    $$\begin{aligned} \begin{aligned} 0&= N_{E,\infty }^2\left( 2\mu _E + \mu _E^2\right) + N_{C,\infty }^2\left( 2\mu _C + \mu _C^2\right) + \overline{\delta _C^2}+ \overline{\delta _E^2}\\&\le - N_{E,\infty }^2 \mu _E^2 - N_{C,\infty }^2 \mu _C^2 + \sum \overline{\delta _i^2}; \end{aligned} \end{aligned}$$
  5. v)

    analogously, for \(-1 \le \mu _S, \mu _C, \mu _P \le 0\), the conservation law (62) implies that \(N_{S,\infty }^2 \mu _S^2 + N_{C,\infty }^2 \mu _C^2 + N_{P,\infty }^2 \mu _P^2 \le \sum \overline{\delta _i^2}\).

To find explicitly \(C_3\) and \(C_4\) in (48), we have to consider all possible configurations of \(\mu _i\)’s in (48), that is all possible quadruples \((\mu _E, \mu _C, \mu _S, \mu _P)\) depending on their signs. The remarks (ii) and (iii) reduce the total number of quadruples by five, and the remaining 11 quadruples are shown in Table 1.

Ad (I). The remarks (iv) and (v) imply that \(\sum N_{i,\infty }^2 \mu _i^2 \le 2 \sum \overline{\delta _i^2}\) and, therefore, (48) is satisfied for \(C_3=3\) and \(C_4=0\).

Ad (II) and (III). We prove (48) for \(-1 \le \mu _E, \mu _C \le 0\) and \(\mu _S\) and \(\mu _P\) having opposite signs. Firstly, let us remark that (61) implies that

$$\begin{aligned} N_{E,\infty }^2 = N_{E,\infty }^2(1+\mu _E)^2 + N_{C,\infty }^2(2\mu _C + \mu _C^2) + \overline{\delta _E^2}+ \overline{\delta _C^2}, \end{aligned}$$

i.e.

$$\begin{aligned} \begin{aligned} (1+\mu _E)^2&= 1 - \frac{N_{C,\infty }^2}{N_{E,\infty }^2}\left( 2\mu _C + \mu _C^2\right) - \frac{1}{N_{E,\infty }^2} \left( \overline{\delta _E^2}+ \overline{\delta _C^2}\right) \\&\ge 1 - \frac{1}{N_{E,\infty }^2} \sum \overline{\delta _i^2}\end{aligned} \end{aligned}$$
(63)

since for \(-1 \le \mu _C \le 0\) there is \(-1 \le 2\mu _C + \mu _C^2 \le 0\). Then, by using an elementary inequality \(a^2+b^2 \ge (a-b)^2/2\) we obtain that

$$\begin{aligned} I_1 + I_2 = ((1+\mu _S)(1+ \mu _E) - (1+\mu _C))^2 + ((1+\mu _P)(1+ \mu _E) - (1+ \mu _C))^2 \end{aligned}$$

satisfies

$$\begin{aligned} \begin{aligned} I_1 + I_2&\ge \frac{1}{2}(\mu _S-\mu _P)^2(1+\mu _E)^2 \\&\ge \frac{1}{2} K_4 \left( N_{S,\infty }^2 \mu _S^2 + N_{P,\infty }^2 \mu _P^2\right) - K_5 \sum \overline{\delta _i^2}\end{aligned} \end{aligned}$$
(64)

where we have used (63) and the fact that \(\mu _S\) and \(\mu _P\) have opposite signs and are bounded above by \(\mu _{S,max}\) and \(\mu _{P,max}\) (by the remark (i)). In (64), \(K_4 = \min \left\{ 1/N_{S,\infty }^2, 1/N_{P,\infty }^2 \right\} \) is sufficient, nevertheless, we will take

$$\begin{aligned} K_4 = \min _{i \in \{S,E,C,P\}} \left\{ \dfrac{1}{N_{i,\infty }^2} \right\} \quad \text {and} \quad K_5 = \dfrac{1}{N_{E,\infty }^2} \left( \mu _{S,max}^2 + \mu _{P,max}^2\right) , \end{aligned}$$
(65)

since \(K_4\) in (65) will appear several times elsewhere. We deduce from (64) and the remark (iv) that

$$\begin{aligned} \sum N_{i,\infty }^2 \mu _i^2 + \sum \overline{\delta _i^2}\le 2 \left( 1 + \frac{K_5}{K_4}\right) \sum \overline{\delta _i^2}+ \frac{2}{K_4} (I_1 + I_2), \end{aligned}$$
(66)

and we see that (48) is satisfied for

$$\begin{aligned} C_4 = \frac{2}{K_3 K_4} \quad \text {and} \quad C_3 = 2\left( 1 + \frac{K_5}{K_4}\right) + C_4 \left( \sqrt{k_{+}} K_1 + \sqrt{k_{p-}} K_2 \right) , \end{aligned}$$

when (48) is compared with the r.h.s. of (66).

Ad (IV). Assume \(-1 \le \mu _E, \mu _C \le 0\) and \(\mu _S, \mu _P > 0\). A combination of (61) and (62) gives

$$\begin{aligned} \begin{aligned} N_{E,\infty }^2 - N_{S,\infty }^2 - N_{P,\infty }^2&= \overline{N_E}^2 + \overline{\delta _E^2}- \overline{N_S}^2 - \overline{\delta _S^2}- \overline{N_P}^2 - \overline{\delta _P^2}\\&\le N_{E,\infty }^2 - \overline{N_S}^2 - \overline{N_P}^2 + \overline{\delta _E^2}- \overline{\delta _S^2}- \overline{\delta _P^2}, \end{aligned} \end{aligned}$$
(67)

since \(\overline{N_E}^2 \le N_{E,\infty }^2\) for \(-1 \le \mu _E \le 0\), where \(\overline{N_E}^2 = N_{E,\infty }^2(1+\mu _E)^2\). We deduce from (67) that

$$\begin{aligned} - N_{S,\infty }^2 - N_{P,\infty }^2 \le - N_{S,\infty }^2(1+\mu _S)^2 - N_{P,\infty }^2(1+\mu _P)^2 + \overline{\delta _E^2}- \overline{\delta _S^2}- \overline{\delta _P^2}\end{aligned}$$

and

$$\begin{aligned} N_{S,\infty }^2\left( 2\mu _S + \mu _S^2\right) + N_{P,\infty }^2\left( 2\mu _P + \mu _P^2\right) \le \overline{\delta _E^2}- \overline{\delta _S^2}- \overline{\delta _P^2}\le \sum \overline{\delta _i^2}. \end{aligned}$$

Since \(\mu _S, \mu _P > 0\), then \(N_{S,\infty }^2 \mu _S^2 + N_{P,\infty }^2 \mu _P^2 \le \sum \overline{\delta _i^2}\). This estimate together with the remark (iv) yields \(\sum N_{i,\infty }^2 \mu _i^2 \le 2\sum \overline{\delta _i^2}\). Similarly as in the case (I), (48) is satisfied for \(C_3=3\) and \(C_4=0\).

Ad (V). Let us now consider the case when \(-1 \le \mu _S, \mu _C, \mu _P \le 0\) and \(\mu _E>0\). As in the case (IV), a combination of (61) and (62) gives

$$\begin{aligned} N_{S,\infty }^2 + N_{P,\infty }^2 - N_{E,\infty }^2&= \overline{N_S}^2 + \overline{\delta _S^2}+ \overline{N_P}^2 + \overline{\delta _P^2}- \overline{N_E}^2 - \overline{\delta _E^2}\nonumber \\&\le N_{S,\infty }^2 + N_{P,\infty }^2 - \overline{N_E}^2 + \overline{\delta _S^2}+ \overline{\delta _P^2}- \overline{\delta _E^2}, \end{aligned}$$
(68)

since, again, \(\overline{N_i}^2 \le N_{i,\infty }^2\) for \(-1 \le \mu _i \le 0\) and \(i = S,P\). Hence, for \(\mu _E>0\) we deduce from (68) that \( N_{E,\infty }^2 \mu _E^2 < \sum \overline{\delta _i^2}\), which with the remark (v) gives \(\sum N_{i,\infty }^2 \mu _i^2 < 2\sum \overline{\delta _i^2}\). Thus, (48) is satisfied for \(C_3=3\) and \(C_4=0\).

Ad (VI) and (VII). Assume that \(\mu _E > 0\), \(-1 \le \mu _C \le 0\) and \(\mu _S\) and \(\mu _P\) have opposite signs. Then, using an elementary inequality \(a^2+b^2 \ge (a+b)^2/2\), we obtain

$$\begin{aligned} I_1+I_2 \ge \dfrac{1}{2}(\mu _S-\mu _P)^2(1+\mu _E)^2 > \dfrac{1}{2}(\mu _S-\mu _P)^2 \ge \dfrac{1}{2}\left( \mu _S^2 + \mu _P^2\right) , \end{aligned}$$

since \((1+\mu _E)^2>1\) and \(\mu _S\) and \(\mu _P\) have opposite signs. Further, it holds that \((1+\mu _k)(1+\mu _E) > (1+\mu _E)\) for \(\mu _k\) being either \(\mu _S>0\) or \(\mu _P>0\) (one of them is positive). This implies \((1+\mu _k)(1+\mu _E) - (1+\mu _C)> \mu _E - \mu _C > 0\) and thus (\(\mu _E\) and \(\mu _C\) have opposite signs)

$$\begin{aligned} I_1 + I_2 > (\mu _E-\mu _C)^2 \ge \mu _E^2 + \mu _C^2. \end{aligned}$$

Altogether, we obtain for both cases that \(I_1 + I_2 > \sum \mu _i^2/4 \ge K_4/4 \sum N_{i,\infty }^2 \mu _i^2\) where \(K_4\) is defined in (65). We deduce that (48) is satisfied for

$$\begin{aligned} C_4 = \frac{4}{K_3 K_4} \quad \text {and} \quad C_3 = 1 + C_4 \left( \sqrt{k_{+}} K_1 + \sqrt{k_{p-}} K_2\right) . \end{aligned}$$
(69)

Ad (VIII). Assume that \(\mu _E, \mu _S, \mu _P > 0\) and \(-1 \le \mu _C \le 0\). Using the similar arguments as in the previous case, in particular, \((1+\mu _S)(1+\mu _E) > (1+\mu _S)\), \((1+\mu _S)(1+\mu _E) > (1+\mu _E)\), \((1+\mu _P)(1+\mu _E) > (1+\mu _P)\) and \((1+\mu _P)(1+\mu _E) > (1+\mu _E)\) and since \(\mu _i-\mu _C > 0\) for each \(i \in \{S,E,P\}\), we can write

$$\begin{aligned} \begin{aligned} I_1 + I_2&= ((1+\mu _S)(1+ \mu _E)-(1+\mu _C))^2 + ((1+\mu _P)(1+ \mu _E)-(1+\mu _C))^2 \\&\ge \dfrac{1}{2}(\mu _S-\mu _C)^2 + (\mu _E-\mu _C)^2 + \dfrac{1}{2}(\mu _P-\mu _C)^2 \ge \dfrac{1}{2} \sum \mu _i^2 \\&\ge \dfrac{K_4}{2} \sum N_{i,\infty }^2 \mu _i^2. \end{aligned} \end{aligned}$$

Hence, (48) is satisfied for \(C_4 = 2/K_3K_4\) and \(C_3\) defined in (69).

Ad (IX). The case when \(-1 \le \mu _E, \mu _S, \mu _P \le 0\) and \(\mu _C > 0\) is similar to the case (VIII). Now we observe that \(\mu _C-\mu _i > 0\) for each \(i \in \{S,E,P\}\) and that \((1+\mu _S)(1+\mu _E) \le (1+\mu _S)\), \((1+\mu _S)(1+\mu _E) \le (1+\mu _E)\), \((1+\mu _P)(1+\mu _E) \le (1+\mu _P)\) and \((1+\mu _P)(1+\mu _E) \le (1+\mu _E)\) which can be used to conclude \(I_1 + I_2 \ge \sum \mu _i^2/2\ge K_4/2 \sum N_{i,\infty }^2 \mu _i^2\). The constants \(C_3\) and \(C_4\) are the same as in the case (VIII).

Ad (X). Assume that \(-1 \le \mu _E \le 0\), \(\mu _C > 0\), \(-1 \le \mu _S \le 0\) and \(\mu _P > 0\). By the same argument as in (IX), we can write

$$\begin{aligned} I_1 + I_2 \ge I_1 \ge (\mu _C-\mu _E)^2 \ge \mu _C^2 + \mu _E^2. \end{aligned}$$
(70)

Using the same elementary inequality as in (II) and (VI), we obtain

$$\begin{aligned} I_1 + I_2 \ge \dfrac{1}{2}(\mu _S-\mu _P)^2(1+\mu _E)^2, \end{aligned}$$
(71)

where \(-1 \le \mu _E \le 0\), and thus we cannot proceed in the way as in the cases (VI) and (VII) nor in the cases (II) and (III), since \(\mu _C\) is positive now. Nevertheless, we distinguish two subcases when \(-1 < \eta \le \mu _E \le 0\) and \(-1 \le \mu _E < \eta \). For example, \(\eta = -1/2\) works well, however, a more suitable constant \(\eta \) could be possibly found. For \(\eta = -1/2\) and \(\eta \le \mu _E \le 0\), we obtain from (71) that

$$\begin{aligned} I_1 + I_2 \ge \dfrac{1}{8}(\mu _S-\mu _P)^2 \ge \dfrac{1}{8}\left( \mu _S^2+\mu _P^2\right) . \end{aligned}$$
(72)

This with (70) implies that \(I_1 + I_2 \ge \sum \mu _i^2/16 \ge K_4/16 \sum N_{i,\infty }^2 \mu _i^2\) and we conclude that (48) is satisfied for \(C_4 = 16/K_3K_4\) and \(C_3\) defined in (69).

For \(\eta = -1/2\) and \(-1 \le \mu _E < \eta \) we obtain, by using an elementary inequality \((a-b)^2 \ge a^2/2-b^2\), that

$$\begin{aligned} \begin{aligned} I_1 + I_2 \ge I_1&= ((1+\mu _C) - (1+\mu _S)(1+\mu _E))^2 \\&\ge \dfrac{1}{2} (1+\mu _C)^2 - (1+\mu _S)^2(1+\mu _E)^2 > \dfrac{1}{4}, \end{aligned} \end{aligned}$$
(73)

since \((1+\mu _C)^2 > 1\) for \(\mu _C > 0\) and \((1+\mu _S)^2(1+\mu _E)^2 < 1/4\) for \(-1 \le \mu _S \le 0\) and \(-1 \le \mu _E < -1/2\). On the other hand, \(\sum N_{i,\infty }^2 \mu _i^2 \le \sum N_{i,\infty }^2 \mu _{i,\max }^2 =: K_6\) by the remark (i). We see that (48) is satisfied for \(C_4 = K_6/4K_3\) and \(C_3\) as in (69).

Ad (XI). Finally, assume that \(-1 \le \mu _E \le 0\), \(\mu _C > 0\), \(\mu _S > 0\) and \(-1 \le \mu _P \le 0\). This case is symmetric to the previous case (X), and thus the same procedure can be applied again (it is sufficient to exchange superscripts S and P everywhere they appear in (X)) to deduce the constants \(C_3\) and \(C_4\) in (48). In particular, we take \(C_4 = 16/K_3K_4\) for \( -1/2 \le \mu _E \le 0\) and \(C_4 = K_6/4K_3\) for \( -1 \le \mu _E < -1/2 \). In both subcases \(C_3\) is as in (69).

From the eleven cases (I)–(XI), we need to take

$$\begin{aligned} C_4 = \frac{1}{K_3} \max \left\{ \frac{16}{K_4}, \frac{K_6}{4} \right\} \end{aligned}$$
(74)

and

$$\begin{aligned} C_3 = \max \left\{ 3, 2\left( 1 + \frac{K_5}{K_4}\right) \right\} + C_4 \left( \sqrt{k_{+}} K_1 + \sqrt{k_{p-}} K_2 \right) \end{aligned}$$
(75)

to find (48) true.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliaš, J. Trend to Equilibrium for a Reaction–Diffusion System Modelling Reversible Enzyme Reaction. Bull Math Biol 80, 104–129 (2018). https://doi.org/10.1007/s11538-017-0364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0364-4

Keywords

Navigation