Skip to main content
Log in

Effects of Hydraulic Soil Properties on Vegetation Pattern Formation in Sloping Landscapes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Current models of vegetation pattern formation rely on a system of weakly nonlinear reaction–diffusion equations that are coupled by their source terms. While these equations, which are used to describe a spatiotemporal planar evolution of biomass and soil water, qualitatively capture the emergence of various types of vegetation patterns in arid environments, they are phenomenological and have a limited predictive power. We ameliorate these limitations by deriving the vertically averaged Richards’ equation to describe flow (as opposed to “diffusion”) of water in partially saturated soils. This establishes conditions under which this nonlinear equation reduces to its weakly nonlinear reaction–diffusion counterpart used in the previous models, thus relating their unphysical parameters (e.g., diffusion coefficient) to the measurable soil properties (e.g., hydraulic conductivity) used to parameterize the Richards equation. Our model is valid for both flat and sloping landscapes and can handle arbitrary topography and boundary conditions. The result is a model that relates the environmental conditions (e.g., precipitation rate, runoff and soil properties) to formation of multiple patterns observed in nature (such as stripes, labyrinth and spots).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bresler E (1973) Simultaneous transport of solutes and water under transient unsaturated flow conditions. Water Resour Res 9(4):975–986

    Article  Google Scholar 

  • Cartenì F, Marasco A, Bonanomi G, Mazzoleni S, Rietkerk M, Giannino F (2012) Negative plant soil feedback explaining ring formation in clonal plants. J Theor Biol 313:153–161

    Article  MathSciNet  MATH  Google Scholar 

  • Comegna A, Severino G, Sommella A (2006) Surface measurements of hydraulic properties in an irrigated soil using a disc permeameter. In: Sustainable irrigation management, technologies and policies, WIT Trans Ecol Environ (Eds: Lorenzini and Brebbia) 96, 341–353

  • Comegna A, Coppola A, Comegna V, Severino G, Sommella A, Vitale C (2010) State-space approach to evaluate spatial variability of field measured soil water status along a line transect in a volcanic-vesuvian soil. Hydrol Earth Syst Sci 14(12):2455–2463

    Article  Google Scholar 

  • Comegna A, Coppola A, Dragonetti G, Severino G, Sommella A, Basile A (2013) Dielectric properties of a tilled sandy volcanic-vesuvian soil with moderate andic features. Soil Tillage Res 133:93–100

    Article  Google Scholar 

  • Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J (2008) The global biogeography of semi-arid periodic vegetation patterns. Glob Ecol Biogeogr 17(6):715–723

    Article  Google Scholar 

  • Deblauwe V, Couteron P, Bogaert J, Barbier N (2012) Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol Monogr 82(1):3–21

    Article  Google Scholar 

  • Dralle DN, Boisramé GFS, Thompson SE (2014) Spatially variable water table recharge and the hillslope hydrologic response: analytical solutions to the linearized hillslope Boussinesq equation. Water Resour Res 50(11):8515–8530

    Article  Google Scholar 

  • Dunkerley DL, Brown KJ (1995) Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J Arid Environ 30(1):41–55

    Article  Google Scholar 

  • Dunkerley DL, Brown KJ (1999) Banded vegetation near Broken Hill, Australia: significance of surface roughness and soil physical properties. Catena 37(1):75–88

    Article  Google Scholar 

  • Fallico C, De Bartolo S, Veltri M, Severino G (2016) On the dependence of the saturated hydraulic conductivity upon the effective porosity through a power law model at different scales. Hydrol Proc 30(13):2366–2372. doi:10.1002/hyp.10798

    Article  Google Scholar 

  • Getzin S, Yizhaq H, Bell B, Erickson TE, Postle AC, Katra I, Tzuk O, Zelnik YR, Wiegand K, Wiegand T et al (2016) Discovery of fairy circles in Australia supports self-organization theory. Proc Natl Acad Sci USA 113(13):3551–3556

    Article  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Biol Cybern 12(1):30–39

    MATH  Google Scholar 

  • Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2004) Ecosystem engineers: from pattern formation to habitat creation. Phys Rev Lett 93(9):098105

    Article  Google Scholar 

  • Gómez S, Severino G, Randazzo L, Toraldo G, Otero J (2009) Identification of the hydraulic conductivity using a global optimization method. Agric Water Manag 96(3):504–510

    Article  Google Scholar 

  • Gowda K, Riecke H, Silber M (2014) Transitions between patterned states in vegetation models for semiarid ecosystems. Phys Rev E 89(2):022701

    Article  Google Scholar 

  • Hemming CF (1965) Vegetation arcs in Somaliland. J Ecol 53(1):57–67

    Article  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, San Diego

    Google Scholar 

  • Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421):1826–1828

    Article  Google Scholar 

  • Lefever R, Lejeune O (1997) On the origin of tiger bush. Bull Math Biol 59(2):263–294

    Article  MATH  Google Scholar 

  • Marasco A, Iuorio A, Cartení F, Bonanomi G, Tartakovsky DM, Mazzoleni S, Giannino F (2014) Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback. Bull Math Biol 76(11):2866–2883

    Article  MathSciNet  MATH  Google Scholar 

  • Meron E (2012) Pattern-formation approach to modelling spatially extended ecosystems. Ecol Model 234:70–82

    Article  Google Scholar 

  • Meron E (2016) Pattern formation-a missing link in the study of ecosystem response to environmental changes. Math Biosci 271:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Meron E, Yizhaq H, Gilad E (2007) Localized structures in dryland vegetation: forms and functions. Chaos 17(3):037109

    Article  MATH  Google Scholar 

  • Montaña C, Lopez-Portillo J, Mauchamp A (1990) The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem. J Ecol 78(3):789–798

    Article  Google Scholar 

  • Mueller EN, Wainwright J, Parsons AJ, Turnbull L (2014) Patterns of land degradation in drylands. Springer, Berlin

    Book  Google Scholar 

  • Pullan AJ (1990) The quasilinear approximation for unsaturated porous media flow. Water Resour Res 26(6):1219–1234

    Article  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J, Kumar L, Prins HH, de Roos AM (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160(4):524–530

    Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692):1926–1929

    Article  Google Scholar 

  • Segel LA, Jackson JL (1972) Dissipative structure: an explanation and an ecological example. J Theor Biol 37(3):545–559

    Article  Google Scholar 

  • Severino G, Monetti VM, Santini A, Toraldo G (2006) Unsaturated transport with linear kinetic sorption under unsteady vertical flow. Transp Porous Media 63(1):147–174

    Article  Google Scholar 

  • Severino G, Comegna A, Coppola A, Sommella A, Santini A (2010) Stochastic analysis of a field-scale unsaturated transport experiment. Adv Water Resour 33(10):1188–1198

    Article  Google Scholar 

  • Severino G, Tartakovsky DM (2015) A boundary-layer solution for flow at the soil-root interface. J Math Biol 70(7):1645–1668

    Article  MathSciNet  MATH  Google Scholar 

  • Severino G, Santini A, Sommella A (2003) Determining the soil hydraulic conductivity by means of a field scale internal drainage. J Hydrol 273(1):234–248

    Article  Google Scholar 

  • Severino G, Scarfato M, Toraldo G (2016) Mining geostatistics to quantify the spatial variability of certain soil flow properties. Procedia Comput Sci 98:419–424

    Article  Google Scholar 

  • Severino G, Scarfato M, Comegna A (2017) Stochastic analysis of unsaturated steady flows above the water table. Water Resour Res. doi:10.1002/2017WR020554

    Google Scholar 

  • Sherratt JA (2016) When does colonisation of a semi-arid hillslope generate vegetation patterns? J Math Biol 73(1):199–226

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Synodinos AD (2012) Vegetation patterns and desertification waves in semi-arid environments: mathematical models based on local facilitation in plants. Discret Contin Dyn Syst Ser B 17(8):2815–2827

    Article  MathSciNet  MATH  Google Scholar 

  • Tartakovsky DM, Guadagnini A, Riva M (2003) Stochastic averaging of nonlinear flows in heterogeneous porous media. J Fluid Mech 492:47–62. doi:10.1017/S002211200300538X

    Article  MathSciNet  MATH  Google Scholar 

  • Ursino N (2005) The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments. Adv Water Resour 28(9):956–963

    Article  Google Scholar 

  • Valentin C, d’Herbès J-M, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37(1):1–24

    Article  Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 87(19):198101

    Article  Google Scholar 

  • White I, Sully MJ (1992) On the variability and use of the hydraulic conductivity alpha parameter in stochastic treatments of unsaturated flow. Water Resour Res 28(1):209–213

    Article  Google Scholar 

  • Worrall GA (1959) The Butana grass patterns. J Soil Sci 10(1):34–53

    Article  Google Scholar 

  • Zelnik YR, Meron E, Bel G (2015) Gradual regime shifts in fairy circles. Proc Natl Acad Sci USA 112(40):12327–12331

    Article  Google Scholar 

  • Zelnik YR, Meron E, Bel G (2016) Localized states qualitatively change the response of ecosystems to varying conditions and local disturbances. Ecol Complex 25:26–34

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from “Programma di scambi internazionali per mobilitá di breve durata” (Naples University, Italy), “OECD Cooperative Research Programme: Biological Resource Management for Sustainable Agricultural Systems” (Contract No. JA00073336). D. M. Tartakovsky’s research was supported, in part, by the National Science Foundation under Grant CBET-1563614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Tartakovsky.

Appendix

Appendix

Integrating the Richards equation (2) over \(x_3\) gives

$$\begin{aligned} \frac{\partial W}{\partial t} = q_3(\mathbf x_h,Z,t) - q_3(\mathbf x_h,s_u,t) - \int _Z^{s_u} (\nabla _h \cdot \mathbf {q}_h ) \mathrm {d}x_3 - S_t, \end{aligned}$$
(A1)

where \(S_t (\mathbf x_h, t) \equiv \int _Z^{s_u} S (\mathbf x, t) \mathrm {d}x_3\) and \(\mathbf {q}_h = (q_1,q_2)^\top \). According to Leibniz rule,

$$\begin{aligned} \int _Z^{s_u} (\nabla _h \cdot \mathbf {q}_h) \mathrm {d}x_3 = \int _Z^{s_u} \sum _{i=1}^2\frac{\partial q_i}{\partial x_i} \mathrm {d}x_3 = \sum _{i=1}^2 \left[ \frac{\partial }{\partial x_i} \int _Z^{s_u} q_i \mathrm {d}x_3 - \frac{\partial s_u}{\partial x_i} \, q_i(\mathbf x_h,s_u,t) \right] . \end{aligned}$$
(A2)

Hence, (A1) yields

$$\begin{aligned} \frac{\partial W}{\partial t} = - \nabla _h \cdot \mathbf {Q}_h -q_3(\mathbf x_h,s_u,t) + q_3(\mathbf x_h,Z,t) + \mathbf {q}_h(\mathbf x_h,s_u,t) \cdot \nabla _h s_u - S_t, \quad \end{aligned}$$
(A3)

where \(\mathbf {Q}_h = (Q_1,Q_2)^\top \) is the specific (per unit length) volumetric flow rate, [L\(^2\)/T], whose components are given by

$$\begin{aligned} Q_i (\mathbf x_h, t) = \int _Z^{s_u} q_i ( \mathbf x, t) \mathrm {d}x_3, \qquad i = 1,2. \end{aligned}$$
(A4)

Next, we rewrite the equation for the soil surface as \(\mathcal {F}(\mathbf x) \equiv x_3 - s_u(\mathbf x_h) = 0\). The unit normal vector to this surface is given by

$$\begin{aligned} \mathbf n = \frac{ \nabla \mathcal {F} }{|\nabla \mathcal {F} |} = \frac{ 1 }{|\nabla \mathcal {F} |} \left( - \frac{\partial s_u}{\partial x_1}, - \frac{\partial s_u}{\partial x_2}, 1 \right) ^\top . \end{aligned}$$
(A5)

Hence, the boundary condition (3) takes the form

$$\begin{aligned} \mathbf {q}_h \cdot \nabla _h s_u - q_3 = p |\nabla \mathcal {F} | \quad \text{ on } \quad x_3 = s_u(\mathbf x_h). \end{aligned}$$
(A6)

The boundary condition (4), together with \(q_3 = - K_s K_r \dfrac{\partial }{\partial x_3} (x_3 + \psi )\) from the second relation in (2), gives rise to the condition

$$\begin{aligned} q_3 = - K_s K^\star _r \qquad \text{ on } \quad x_3 = Z, \end{aligned}$$
(A7)

where \(K_r^\star \) is the relative conductivity value at \(x_3 = Z\). Substituting (A6) and (A7) into (A3) yields

$$\begin{aligned} \frac{\partial W}{\partial t} = - \nabla _h \cdot \mathbf {Q}_h + p \sqrt{1 + |\nabla _h s_u|^2} - K_s K_r^\star - S_t, \nonumber \\ \quad Q_i = \int _Z^{s_u} q_i (\mathbf x_h, x_3) \mathrm {d}x_3 , \quad i = 1,2 \end{aligned}$$
(A8)

where \(S_t(\mathbf x_h,t)\) is the total rate of water consumption by plants, \([\text {L/T}]\). Substituting the definition of the Darcy flux \(\mathbf q\) in (2) into (A4) yields

$$\begin{aligned} Q_i = - K_s\int _Z^{s_u} K_r(\vartheta ) \frac{\partial \psi }{\partial x_i} \mathrm {d}x_3 = - K_s \int _Z^{s_u} D(\vartheta ) \frac{\partial \vartheta }{\partial x_i} \mathrm {d}x_3 , \qquad i = 1,2 \end{aligned}$$
(A9)

where \(D(\vartheta )\) is the moisture diffusivity. Let \(F(\vartheta ) \equiv \int ^\vartheta _0 D(s)\,\mathrm {d}s \), then

$$\begin{aligned} Q_i = - K_s\int _Z^{s_u} \frac{\partial }{\partial x_i} F (\mathbf x_h, x_3) \mathrm {d}x_3 , \qquad i = 1,2. \end{aligned}$$
(A10)

Using Leibniz rule,

$$\begin{aligned} Q_i / K_s = - \frac{\partial }{\partial x_i} \int _Z^{s_u} \mathrm {d}x_3 \, F (\mathbf x_h, x_3) + F(s_u, Z) \frac{\partial s_u}{\partial x_i}, \end{aligned}$$
(A11)

and substituting into (A8) leads to

$$\begin{aligned} \frac{\partial W}{\partial t} = K_s \nabla _h^2 G - K_s \nabla _h \cdot [F(s_u,Z) \nabla _h s_u] + p \sqrt{1 + |\nabla _h s_u|^2} - K_s K_r^\star - S_t. \end{aligned}$$
(A12)

with

$$\begin{aligned} G = \int _Z^{s_u} F(\mathbf x_h, x_3) \mathrm {d}x_3. \end{aligned}$$
(A13)

We assume that \(K_r = \exp \left( \alpha \psi \right) \) and \(\vartheta = \exp \left( \alpha \psi \right) \). Then,

$$\begin{aligned} D(\vartheta ) \equiv K_r(\vartheta ) \frac{\mathrm d \psi }{\mathrm d \vartheta } = \frac{1}{\alpha } \quad \text {and}\quad F(\vartheta ) = \frac{\vartheta }{\alpha }. \end{aligned}$$
(A14)

Hence, \(G \equiv W / \alpha \), which yields (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severino, G., Giannino, F., Cartení, F. et al. Effects of Hydraulic Soil Properties on Vegetation Pattern Formation in Sloping Landscapes. Bull Math Biol 79, 2773–2784 (2017). https://doi.org/10.1007/s11538-017-0348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0348-4

Keywords

Mathematics Subject Classification

Navigation