Skip to main content
Log in

Multiscale Modeling of Diffusion in a Crowded Environment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1(3–4):137–151

    Article  Google Scholar 

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6(3):1209–1213

    Article  Google Scholar 

  • Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci USA 108:12675–12680

    Article  Google Scholar 

  • Barkai E, Garini Y, Metzler R (2012) Strange kinetics of single molecules in living cells. Phys Today 65(8):29–35

    Article  Google Scholar 

  • Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83(4):1891–1901

    Article  Google Scholar 

  • Blanc E, Engblom S, Hellander A, Lötstedt P (2016) Mesoscopic modeling of stochastic reaction–diffusion kinetics in the subdiffusive regime. Multiscale Model Simul 14(2):668–707

    Article  MathSciNet  MATH  Google Scholar 

  • Brown DL, Peterseim D (2014) A multiscale method for porous microstructures. ArXiv e-prints

  • Cao Y, Gillespie DT, Petzold LR (2005) The slow-scale stochastic simulation algorithm. J Chem Phys 122:014116

    Article  Google Scholar 

  • Cianci C, Smith S, Grima R (2016) Molecular finite-size effects in stochastic models of equilibrium chemical systems. J Chem Phys 084101(144):1–35

    Google Scholar 

  • Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Colloid Sci 4:425–437

    Article  Google Scholar 

  • Di Rienzo C, Piazza V, Gratton E, Beltram F, Cardarelli F (2014) Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat Commun 5:5891

    Article  Google Scholar 

  • Donev A, Bulatov VV, Oppelstrup T, Gilmer GH, Sadigh B, Kalos MH (2010) A first-passage kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J Comput Phys 229:3214–3236

    Article  MathSciNet  MATH  Google Scholar 

  • Drawert B, Engblom S, Hellander A (2012) URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst Biol 6:76

    Article  Google Scholar 

  • Elf J, Ehrenberg M (2004) Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst Biol 1:230–236

    Article  Google Scholar 

  • Ellery AJ, Baker RE, Simpson MJ (2015) Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes. Phys Biol 12(6):066010

    Article  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11(1):114–119

    Article  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  Google Scholar 

  • Engblom S, Ferm L, Hellander A, Lötstedt P (2009) Simulation of stochastic reaction–diffusion processes on unstructured meshes. SIAM J Sci Comput 31:1774–1797

    Article  MathSciNet  MATH  Google Scholar 

  • Engblom S, Lötstedt P, Meinecke L (2017) Mesoscopic modeling of random walk and reactions in crowded media. To appear

  • Fanelli D, McKane AJ (2010) Diffusion in a crowded environment. Phys Rev E Stat Nonlinear Soft Matter Phys 82(2):1–4

    Article  Google Scholar 

  • Fanelli D, McKane AJ, Pompili G, Tiribilli B, Vassalli M, Biancalani T (2013) Diffusion of two molecular species in a crowded environment: theory and experiments. Phys Biol 10(4):045008

    Article  Google Scholar 

  • Fange D, Berg OG, Sjöberg P, Elf J (2010) Stochastic reaction-diffusion kinetics in the microscopic limit. Proc Natl Acad Sci USA 107(46):19820–5

    Article  MATH  Google Scholar 

  • Galanti M, Fanelli D, Maritan A, Piazza F (2014) Diffusion of tagged particles in a crowded medium. EPL Europhys Lett 107(2):20006

    Article  Google Scholar 

  • Gardiner CW (2004) Handbook of stochastic methods springer series in synergetics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Gardiner CW, McNeil KJ, Walls DF, Matheson IS (1976) Correlations in stochastic theories of chemical reactions. J Stat Phys 14(4):307–331

    Article  Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 104(9):1876–1889

    Article  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    Article  MathSciNet  Google Scholar 

  • Gillespie DT, Hellander A, Petzold LR (2013) Perspective: stochastic algorithms for chemical kinetics. J Chem Phys 138(17):1709011

    Article  Google Scholar 

  • Grasberger B, Minton C, DeLisi AP, Metzger H (1986) Interaction between proteins localized in membranes. Proc Natl Acad Sci USA 83(17):6258–6262

    Article  Google Scholar 

  • Grima R (2010) Intrinsic biochemical noise in crowded intracellular conditions. J Chem Phys 132(18):05B604

    Article  Google Scholar 

  • Grima R, Schnell S (2006) A systematic investigation of the rate laws valid in intracellular environments. Biophys Chem 124(1):1–10

    Article  Google Scholar 

  • Grima R, Schnell S (2007) A mesoscopic simulation approach for modeling intracellular reactions. J Stat Phys 128(1–2):139–164

    Article  MathSciNet  MATH  Google Scholar 

  • Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta Proteins Proteomics 1649(2):127–139

    Article  Google Scholar 

  • Hansen MMK, Meijer LHH, Spruijt E, Maas RJM, Rosquelles MV, Groen J, Heus HA, Huck WTS (2015) Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets. Nat Nanotechnol 11(October):1–8

    Google Scholar 

  • Hattne J, Fange D, Elf J (2005) Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21:2923–2924

    Article  Google Scholar 

  • Havlin S, Ben-Avraham D (2002) Diffusion in disordered media. Adv Phys 51(1):187–292

    Article  Google Scholar 

  • Hellander S, Hellander A, Petzold L (2012) Reaction–diffusion master equation in the microscopic limit. Phys Rev E Stat Nonlinear Soft Matter Phys 85(4):1–5

    Article  Google Scholar 

  • Hellander S, Hellander A, Petzold L (2015) Reaction rates for mesoscopic reaction–diffusion kinetics. Phys Rev E 91(2):023312

    Article  MathSciNet  Google Scholar 

  • Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst Biol 6:36

    Article  Google Scholar 

  • Hrabe J, Hrabetová S, Segeth K (2004) A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys J 87(3):1606–1617

    Article  Google Scholar 

  • Isaacson SA (2009) The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J Appl Math 70(1):77–111

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacson SA, Peskin CS (2006) Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J Sci Comput 28(1):47–74

    Article  MathSciNet  MATH  Google Scholar 

  • Jin S, Verkman AS (2007) Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. J Phys Chem B 111(14):3625–3632

    Article  Google Scholar 

  • Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang J-CJ, Baden SB, Sejnowski TJ, Stiles JR (2008) Fast Monte Carlo simulation methods for biological reaction–diffusion systems in solution and on surfaces. SIAM J Sci Comput 30(6):3126–3149

    Article  MathSciNet  MATH  Google Scholar 

  • Krapf D (2015) Mechanisms underlying anomalous diffusion in the plasma membrane, vol 75. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Landman KA, Fernando AE (2011) Myopic random walkers and exclusion processes: single and multispecies. Phys A Stat Mech Its Appl 390(21–22):3742–3753

    Article  Google Scholar 

  • Lee B, LeDuc PR, Schwartz R (2008) Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Greens function reaction dynamics. Phys Rev E 78(3):031911

    Article  Google Scholar 

  • Lötstedt P, Meinecke L (2015) Simulation of stochastic diffusion via first exit times. J Comput Phys 300:862–886

    Article  MathSciNet  MATH  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  Google Scholar 

  • Målqvist A, Peterseim D (2014) Localization of elliptic multiscale problems. Math Comput 83(290):2583–2603

    Article  MathSciNet  MATH  Google Scholar 

  • Marquez-Lago TT, Leier A, Burrage K (2012) Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. IET Syst Biol 6(4):134

    Article  Google Scholar 

  • McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819

    Article  Google Scholar 

  • McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4:413–478

    Article  MathSciNet  MATH  Google Scholar 

  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch W, Baumeister. G (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298(2002):1209–1213

    Article  Google Scholar 

  • Meinecke L, Eriksson M (2016) Excluded volume effects in on- and off-lattice reaction–diffusion models. IET Syst Biol 11(2):55–64

    Article  Google Scholar 

  • Meinecke L, Lötstedt P (2016) Stochastic diffusion processes on Cartesian meshes. J Comput Appl Math 294:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Meinecke L, Engblom S, Hellander A, Lötstedt P (2016) Analysis and design of jump coefficients in discrete stochastic diffusion models. SIAM J Sci Comput 38(1):A55–A83

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R (2001) The future is noisy: the role of spatial fluctuations in genetic switching. Phys Rev Lett 87:068103

    Article  Google Scholar 

  • Mommer MS, Lebiedz D (2009) Modeling subdiffusion using reaction diffusion systems. SIAM J Appl Math 70(1):112–132

    Article  MathSciNet  MATH  Google Scholar 

  • Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336(6078):183–187

    Article  MathSciNet  MATH  Google Scholar 

  • Muramatsu N, Minton AP (1988) Tracer diffusion of globular proteins in concentrated protein solutions. Proc Natl Acad Sci USA 85(9):2984–2988

    Article  Google Scholar 

  • Øksendal B (2003) Stochastic differential equations, 6th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Oppelstrup T, Bulatov VV, Donev A, Kalos MH, Gilmer GH, Sadigh B (2009) First-passage kinetic Monte Carlo method. Phys Rev E 80:066701

    Article  MATH  Google Scholar 

  • Penington CJ, Hughes BD, Landman KA (2011) Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys Rev E 84(4):041120

    Article  Google Scholar 

  • Phillips R, Kondev J, Theriot J (2008) Physical biology of the cell. Taylor & Francis Group, New York Garland Science

    Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226

    Article  Google Scholar 

  • Redner S (2001) A guide to first-passage processes. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ridgway D, Broderick G, Lopez-Campistrous A, Ru’aini M, Winter P, Hamilton M, Boulanger P, Kovalenko A, Ellison MJ (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94(10):3748–3759

    Article  Google Scholar 

  • Roberts E, Stone JE, Luthey-Schulten Z (2013) Lattice microbes: high-performance stochastic simulation method for the reaction–diffusion master equation. J Comput Chem 34(3):245–255

    Article  Google Scholar 

  • Schnell S, Turner TE (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85(2–3):235–260

    Article  Google Scholar 

  • Schöneberg J, Ullrich A, Noé F (2014) Simulation tools for particle-based reaction–diffusion dynamics in continuous space. BMC Biophys 7(1):11

    Article  Google Scholar 

  • Schulz JHP, Barkai E, Metzler R (2014) Aging renewal theory and application to random walks. Phys Rev X 4(1):011028

    Google Scholar 

  • Smith GR, Xie L, Lee B, Schwartz R (2014) Applying molecular crowding models to simulations of virus capsid assembly in vitro. Biophys J 106(1):310–320

    Article  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99(20):12795–12800

    Article  Google Scholar 

  • Takahashi K, Arjunan SN, Tomita M (2005) Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico. FEBS Lett 579(8):1783–1788

    Article  Google Scholar 

  • Takahashi K, Tanase-Nicola S, ten Wolde PR (2010) Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc Natl Acad Sci USA 107(6):2473–2478

    Article  Google Scholar 

  • Taylor PR, Yates CA, Simpson MJ, Baker RE (2015) Reconciling transport models across scales: the role of volume exclusion. Phys Rev E 92(4):040701

    Article  Google Scholar 

  • van Zon JS, ten Wolde PR (2005a) Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Phys Rev Lett 94(12):1–4

    Google Scholar 

  • van Zon JS, ten Wolde PR (2005b) Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. J Chem Phys 123:234910

    Article  Google Scholar 

  • Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27(1):27–33

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council Grant 621-2001-3148 and the NIH grant for StochSS with number 1R01EB014877-01. The author would like to thank the Computational Systems Biology group at Uppsala University for fruitful discussions and Markus Eriksson for the Smoldyn simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Meinecke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meinecke, L. Multiscale Modeling of Diffusion in a Crowded Environment. Bull Math Biol 79, 2672–2695 (2017). https://doi.org/10.1007/s11538-017-0346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0346-6

Keywords

Navigation