Skip to main content
Log in

Population Model of Quorum Sensing with Multiple Parallel Pathways

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) is a bacterial communication mechanism that uses signal-receptor binding to regulate gene expression based on cell density, resulting in group behaviors such as biofilm formation, bioluminescence and stress response. In certain bacterial species such as Vibrio harveyi, several parallel QS signaling pathways drive a single phosphorylation–dephosphorylation cycle, which in turn regulates QS target genes. In this paper, we investigate the possible role of parallel signaling pathways by developing a mathematical model of QS in V. harveyi at both the single-cell and population levels. First we explore how signal integration may be achieved at the single-cell level, and how different model parameters influence the process. We then consider two examples of signal integration at the population level: a one-population model responding to two environmental cues (cell density and mass transfer), and a two-population model with distinct cell densities. In each case, we use contraction analysis to reduce the population model to an effective single-cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bressloff PC (2016) Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing. Phys Rev E 93:062418

    Article  Google Scholar 

  • Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips DM, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci 111:4280–4284

    Article  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295–298

    Article  Google Scholar 

  • Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134:5618–5626

    Article  Google Scholar 

  • Dockery JD, Keener JP (2001) A mathematical model for quorum-sensing in Pseudomonas aeruginosa. Bull Math Biol 63:95–116

    Article  MATH  Google Scholar 

  • Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1:5–12

    Google Scholar 

  • Fancher S, Mugler A (2017) Fundamental limits to collective concentration sensing in cell populations. Phys Rev Lett 118(7):078101

    Article  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  Google Scholar 

  • Gao M, Zheng H, Ren Y, Lou R, Wu F, Yu W, Liu X, Ma X (2016) A crucial role for spatial distribution in bacterial quorum sensing. Sci Rep 6:34695. doi:10.1038/srep34695

  • Ge H, Qian M (2008) Sensitivity amplification in the phosphorylation–dephosphorylation cycle: nonequilibrium steady states, chemical master equation and temporal cooperativity. J Chem Phys 129:015104

    Article  Google Scholar 

  • Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78:684–6844

    Article  MathSciNet  Google Scholar 

  • Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. WIRE Syst Biol Med 1:45–60

    Article  Google Scholar 

  • Hagen SJ (2015) The physical basis of bacterial quorum communication. Springer, New York

    Book  Google Scholar 

  • Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  Google Scholar 

  • Huang Q, Qian H (2009) Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior. Chaos Interdiscip J Nonlinear Sci 19(3):033109

    Article  MATH  Google Scholar 

  • Hunter GAM, Guevara Vasquez F, Keener JP (2013) A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems. Phys Biol 10:046007

    Article  Google Scholar 

  • Jung SA, Hawver LA, Ng WL (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet 62:255

    Article  Google Scholar 

  • Lenz DDH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    Article  Google Scholar 

  • Lohmiller W, Slotine JJE (1998) On contraction analysis of nonlinear systems. Automatica 34:683–696

    Article  MathSciNet  MATH  Google Scholar 

  • Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS (2009) Quantifying the integration of quorum-sensing signal with single-cell resolution. PLoS Biol 7(3):e1000068

    Article  Google Scholar 

  • Mehta P, Goyal S, Long T, Bassler BL, Wingreen N (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Cell Biol 5(325):1–11

    Google Scholar 

  • Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806

    Article  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:577–588

    Article  Google Scholar 

  • Popat R, Cornforth DM, McNally L, Brown SP (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12:20140882

    Article  Google Scholar 

  • Qian H (2003) Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction. Biophys Chem 105(2):585–593

    Article  Google Scholar 

  • Qian H (2012) Cooperativity in cellular biochemical processes. Annu Rev Biophys 41:179–204

    Article  Google Scholar 

  • Qian H, Cooper JA (2008) Temporal cooperativity and sensitivity amplification in biological signal transduction. Biochemistry 47:2211–2220

    Article  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  Google Scholar 

  • Russo G, Slotine JJE (2010) Global convergence of quorum sensing network. Phys Rev E 82:041919

    Article  MathSciNet  Google Scholar 

  • Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473

    Article  Google Scholar 

  • Teng S-W, Schaffer JN, Tu KC, Mehta P, Lu W, Ong NP, Bassler BL, Wingreen NS (2011) Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi. Mol Syst Biol 7:491

    Article  Google Scholar 

  • Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL (2010) Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol cell 37(4):567–579

    Article  Google Scholar 

  • Waters CM, Basser BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  Google Scholar 

  • Waters CM, Basser BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducer. Genes Dev 20(19):27542767

    Article  Google Scholar 

  • Wei Y, Ng W-L, Cong J, Bassler BL (2012) igand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS. Mol Microbiol 83:1095–1108

    Article  Google Scholar 

  • West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMS 1613048 and RTG 1148230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Bressloff, P.C. Population Model of Quorum Sensing with Multiple Parallel Pathways. Bull Math Biol 79, 2599–2626 (2017). https://doi.org/10.1007/s11538-017-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0343-9

Keywords

Navigation