Skip to main content

Advertisement

Log in

Combining Two Methods of Global Sensitivity Analysis to Investigate MRSA Nasal Carriage Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We apply two different sensitivity techniques to a model of bacterial colonization of the anterior nares to better understand the dynamics of Staphylococcus aureus nasal carriage. Specifically, we use partial rank correlation coefficients to investigate sensitivity as a function of time and identify a reduced model with fewer than half of the parameters of the full model. The reduced model is used for the calculation of Sobol’ indices to identify interacting parameters by their additional effects indices. Additionally, we found that the model captures an interesting characteristic of the biological phenomenon related to the initial population size of the infection; only two parameters had any significant additional effects, and these parameters have biological evidence suggesting they are connected but not yet completely understood. Sensitivity is often applied to elucidate model robustness, but we show that combining sensitivity measures can lead to synergistic insight into both model and biological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams BM, Banks HT, Davidian M, Kwon HD, Tran HT, Wynne SN, Rosenberg ES (2005) Hiv dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184(1):10–49. doi:10.1016/j.cam.2005.02.004

    Article  MathSciNet  MATH  Google Scholar 

  • Archer NK, Harro JM, Shirtliff ME (2013) Clearance of staphylococcus aureus nasal carriage is t cell dependent and mediated through interleukin-17a expression and neutrophil influx. Infect Immun 81(6):2070–2075

    Article  Google Scholar 

  • Arino J, Brauer F, van den Driessche P, Watmough J, Wu J (2008) A model for influenza with vaccination and antiviral treatment. J Theor Biol 253(1):118–130

    Article  MathSciNet  Google Scholar 

  • Bailey NT, Duppenthaler J (1980) Sensitivity analysis in the modelling of infectious disease dynamics. J Math Biol 10(2):113–131

    Article  MathSciNet  MATH  Google Scholar 

  • Banks H, Bortz D (2005) A parameter sensitivity methodology in the context of HIV delay equation models. J Math Biol 50(6):607–625

    Article  MathSciNet  MATH  Google Scholar 

  • Bianca C, Chiacchio F, Pappalardo F, Pennisi M (2012) Mathematical modeling of the immune system recognition to mammary carcinoma antigen. BMC Bioinform 13:15

    Article  Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission—an HIV model as an example. Int Stat Rev 62(2):229–243

    Article  MATH  Google Scholar 

  • Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74(6):3415–3426

    Article  Google Scholar 

  • Brandwood A, Noble KR, Schindhelm K (1992) Phagocytosis of carbon particles by macrophages in vitro. Biomaterials 13(9):646–648

    Article  Google Scholar 

  • Coxon A, Tang T, Mayadas TN (1999) Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo: a role for granulocyte/macrophage colony-stimulating factor. J Exp Med 190(7):923–933

    Article  Google Scholar 

  • Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of sensitivity of coupled reaction ssystems to uncertainties in rate coefficents 1 theory. J Chem Phys 59(8):3873–3878

    Article  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298. doi:10.1126/science.280.5361.295

    Article  Google Scholar 

  • Edelson PJ, Zwiebel R, Cohn ZA (1975) Pinocytic rate of activated macrophages. J Exp Med 142(5):1150–1164

    Article  Google Scholar 

  • Eriksen NHR, Espersen F, Rosdahl VT, Jensen K (1995) Carriage of staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol Infect 115(1):51–60

    Article  Google Scholar 

  • Gonzalez-Zorn B, Senna JPM, Fiette L, Shorte S, Testard A, Chignard M, Courvalin P, Grillot-Courvalin C (2005) Bacterial and host factors implicated in nasal carriage of methicillin-resistant staphylococcus aureus in mice. Infect Immun 73(3):1847–1851

    Article  Google Scholar 

  • Hill RLR, Casewell MW (2000) The in-vitro activity of povidone-iodine cream against staphylococcus aureus and its bioavailability in nasal secretions. J Hosp Infect 45(3):198–205. doi:10.1053/jhin.2000.0733

    Article  Google Scholar 

  • Holtfreter S, Roschack K, Eichler P, Eske K, Holtfreter B, Kohler C, Engelmann S, Hecker M, Greinacher A, Broker BM (2006) Staphylococcus aureus carriers neutralize superantigens by antibodies specific for their colonizing strain: a potential explanation for their improved prognosis in severe sepsis. J Infect Dis 193(9):1275–1278

    Article  Google Scholar 

  • Jarrett AM, Cogan NG, Hussaini MY (2015a) Mathematical model for MRSA Nasal carriage. Bull Math Biol. doi:10.1007/s11538-015-0104-6

    MathSciNet  MATH  Google Scholar 

  • Jarrett AM, Cogan NG, Shirtliff ME (2015b) Modeling the interaction between the host immune response, bacterial dynamics, and inflammatory damage in comparison to immunomodulation and vaccination experiments. Math Med Biol 32:285–306. doi:10.1093/imammb/dqu008

    Article  MATH  Google Scholar 

  • Jarrett AM, Liu YN, Cogan NG, Hussaini MY (2015c) Global sensitivity analysis used to interpret biological experimental results. J Math Biol 71(1):151–170. doi:10.1007/s00285-014-0818-3

    Article  MathSciNet  MATH  Google Scholar 

  • Kiser KB, Cantey-Kiser JM, Lee JC (1999) Development and characterization of a staphylococcus aureus nasal colonization model in mice. Infect Immun 67(10):5001–5006

    Google Scholar 

  • Kluytmans J, Wertheim HFL (2005) Nasal carriage of staphylococcus aureus and prevention of nosocomial infections. Infection 33(1):3–8. doi:10.1007/s15010-005-4012-9

    Article  Google Scholar 

  • Krismer B, Peschel A (2011) Does staphylococcus aureus nasal colonization involve biofilm formation? Future Microbiol 6(5):489–493

    Article  Google Scholar 

  • Kucherenko S, Feil B, Shah N, Mauntz W (2011) The identification of model effective dimensions using global sensitivity analysis. Reliab Eng Syst Saf 96(4):440–449. doi:10.1016/j.ress.2010.11.003

    Article  Google Scholar 

  • Laupland KB, Conly JM (2003) Treatment of staphylococcus aureus colonization and prophylaxis for infection with topical intranasal mupirocin: an evidence-based review. Clin Infect Dis 37(7):933–938. doi:10.1086/377735

    Article  Google Scholar 

  • Lee YS, Liu OZ, Hwang HS, Knollmann BC, Sobie EA (2013) Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium sparks. Biophys J 104(5):1142–1150

    Article  Google Scholar 

  • Liu R, Owen AB (2006) Estimating mean dimensionality of analysis of variance decompositions. J Am Stat Assoc 101:712–721

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y (2013) Non-intrusive methods for probabilistic uncertainty quantification and global sensitivity analysis in nonlinear stochastic phenomena. Ph.D. Thesis Florida State University, USA

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MathSciNet  Google Scholar 

  • Matsui H, Ito T, Ohnishi SI (1983) Phagocytosis by macrophages 3. Effects of heat-labile opsonin and poly(l-lysine). J Cell Sci 59:133–143

    Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Google Scholar 

  • Neilan RLM, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 72(8):2004–2018

    Article  MathSciNet  MATH  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Bact Biofilms 322:207–228

    Article  Google Scholar 

  • Peacock SJ, de Silva I, Lowy FD (2001) What determines nasal carriage of staphylococcus aureus? Trends Microbiol 9(12):605–610

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145:280–297

    Article  MATH  Google Scholar 

  • Saltelli A, Bolado R (1998) An alternative way to compute fourier amplitude sensitivity test (FAST). Comput Stat Data Anal 26(4):445–460

    Article  MATH  Google Scholar 

  • Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC (2006) Immunization with staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 74(4):2145–2153. doi:10.1128/iai.74.4.2145-2153.2006

    Article  Google Scholar 

  • Shirtliff ME, OMay G, Leid J (2012) Protective vaccine against staphylococcus aureus biofilms comprising cell wall-associated immunogens. United States Patent US 08318180

  • Sobol’ I (1993) Sensitivity estimates for non-linear mathematical models. Math Model Comput Exp 1:407–414

    MATH  Google Scholar 

  • Sobol’ I (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Spector WS (1956) Cell division frequency: microorganisms. Saunders, Philadelphia

    Google Scholar 

  • Steed LL, Costello J, Lohia S, Jones T, Spannhake EW, Nguyen S (2014) Reduction of nasal staphylococcus aureus carriage in health care professionals by treatment with a nonantibiotic, alcohol-based nasal antiseptic. Am J Infect Control 42(8):841–846. doi:10.1016/j.ajic.2014.04.008

    Article  Google Scholar 

  • Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195(8):1645–1655. doi:10.1128/jb.01672-12

    Article  Google Scholar 

  • Weidenmaier C, Goerke C, Wolz C (2012) Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20(5):243–250

    Article  Google Scholar 

  • von Eiff C, Becker K, Machka K, Stammer H, Peters G, Study G (2001) Nasal carriage as a source of staphylococcus aureus bacteremia. N Engl J Med 344(1):11–16

    Article  Google Scholar 

  • Wertheim HFL, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans J, van Keulen PHJ, Vandenbroucke-Grauls C, Meester MHM, Verbrugh HA (2004) Risk and outcome of nosocomial staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364(9435):703–705

    Article  Google Scholar 

  • Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005a) The role of nasal carriage in staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762

    Article  Google Scholar 

  • Wertheim HFL, Verveer J, Boelens HAM, van Belkum A, Verbrugh HA, Vos MC (2005) Effect of mupirocin treatment on nasal, pharyngeal, and perineal carriage of staphylococcus aureus in healthy adults. Antimicrob Agents Chemother 49(4):1465–1467. doi:10.1128/aac.49.4.1465-1467.2005

    Article  Google Scholar 

  • Williams RE (1963) Healthy carriage of staphylococcus aureus: its prevalence and importance. Bacteriol Rev 27(1):56–71

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by CBET 1510743 and CPRIT RR160005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Jarrett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrett, A.M., Cogan, N.G. & Hussaini, M.Y. Combining Two Methods of Global Sensitivity Analysis to Investigate MRSA Nasal Carriage Model. Bull Math Biol 79, 2258–2272 (2017). https://doi.org/10.1007/s11538-017-0329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0329-7

Keywords

Navigation