Skip to main content
Log in

Stabilization of Structured Populations via Vector Target-Oriented Control

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In contrast with unstructured models, structured discrete population models have been able to fit and predict chaotic experimental data. However, most of the chaos control techniques in the literature have been designed and analyzed in a one-dimensional setting. Here, by introducing target-oriented control for discrete dynamical systems, we prove the possibility to stabilize a chosen state for a wide range of structured population models. The results are illustrated with introducing a control in the celebrated LPA model describing a flour beetle dynamics. Moreover, we show that the new control allows to stabilize periodic solutions for higher-order difference equations, such as the delayed Ricker model, for which previous target-oriented methods were not designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey BA (1996) Local Lyapunov exponents: predictability depends on where you are. In: Nonlinear dynamics and economics. Cambridge University Press, Cambridge, pp 345–359

  • Braverman E, Chan B (2014) Stabilization of prescribed values and periodic orbits with regular and pulse target oriented control. Chaos 24(1):013119

    Article  MathSciNet  Google Scholar 

  • Braverman E, Franco D (2015) Stabilization with target oriented control for higher order difference equations. Phys Lett A 379(16):1102–1109

    Article  MathSciNet  Google Scholar 

  • Braverman E, Liz E (2012) On stabilization of equilibria using predictive control with and without pulses. Comput Math Appl 64(7):2192–2201

    Article  MathSciNet  MATH  Google Scholar 

  • Capeáns R, Sabuco J, Sanjuán MA (2014) When less is more: partial control to avoid extinction of predators in an ecological model. Ecol Complex 19:1–8

    Article  Google Scholar 

  • Costantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 275(5298):389–391

    Article  MATH  Google Scholar 

  • Cushing JM, Costantino RF, Dennis B, Desharnais R, Henson SM (2005) Chaos in ecology: experimental nonlinear dynamics, vol 1. Theoretical ecology series. Academic Press, Burlington

    Google Scholar 

  • Dattani J, Blake JC, Hilker FM (2011) Target-oriented chaos control. Phys Lett A 375(45):3986–3992

    Article  MATH  Google Scholar 

  • Desharnais RA, Costantino RF, Cushing JM, Henson SM, Dennis B (2001) Chaos and population control of insect outbreaks. Ecol Lett 4(3):229–235

    Article  Google Scholar 

  • Franco D, Liz E (2013) A two-parameter method for chaos control and targeting in one-dimensional maps. Int J Bifurcat Chaos 23(01):1350003,11

    Article  MathSciNet  MATH  Google Scholar 

  • Fryxell J, Smith I, Lynn D (2005) Evaluation of alternate harvesting strategies using experimental microcosms. Oikos 111(1):143–149

    Article  Google Scholar 

  • Granas A, Dugundji J (2013) Fixed point theory. Springer, Berlin

    MATH  Google Scholar 

  • Güémez J, Matías MA (1993) Control of chaos in unidimensional maps. Phys Lett A 181(1):29–32

    Article  MathSciNet  Google Scholar 

  • Hassell MP, Lawton JH, May R (1976) Patterns of dynamical behaviour in single-species populations. J Anim Ecol 45(2):471–486

    Article  Google Scholar 

  • Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50(1):69–77

    Article  MathSciNet  MATH  Google Scholar 

  • Hilker FM, Westerhoff FH (2005) Control of chaotic population dynamics: ecological and economic considerations. Beitraege des Instituts fuer Umweltsystemforschung 32:22

    Google Scholar 

  • Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kot JL, May R, Schwinning S, Sugihara G, Tidd C, Turchin P, Winfree T (1993) Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364:232–235

    Article  Google Scholar 

  • Levin SA, May RM (1976) A note on difference-delay equations. Theor Popul Biol 9(2):178–187

    Article  MathSciNet  MATH  Google Scholar 

  • Liz E (2010) How to control chaotic behaviour and population size with proportional feedback. Phys Lett A 374(5):725–728

    Article  MathSciNet  MATH  Google Scholar 

  • Liz E, Pötzsche C (2014) PBC-based pulse stabilization of periodic orbits. Phys D Nonlinear Phenom 272:26–38

    Article  MathSciNet  MATH  Google Scholar 

  • Marotto FR (1978) Snap-back repellers imply chaos in \({{\mathbb{R}}}^n\). J Math Anal Appl 63:199–223

    Article  MathSciNet  MATH  Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186(4164):645–647

    Article  Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261(5560):459–467

    Article  Google Scholar 

  • Morris WF (1990) Problems in detecting chaotic behavior in natural populations by fitting simple discrete models. Ecology 71(5):1849–1862

    Article  Google Scholar 

  • Parthasarathy S, Sinha S (1995) Controlling chaos in unidimensional maps using constant feedback. Phys Rev E 51(6):6239–6242

    Article  Google Scholar 

  • Perán J, Franco D (2015) Global convergence of the second order Ricker equation. Appl Math Lett 47:47–53

    Article  MathSciNet  MATH  Google Scholar 

  • Sah P, Salve JP, Dey S (2013) Stabilizing biological populations and metapopulations through adaptive limiter control. J Theor Biol 320:113–123

    Article  MathSciNet  Google Scholar 

  • Segura J, Hilker FM, Franco D (2016) Adaptive threshold harvesting and the suppression of transients. J Theor Biol 395:103–114

    Article  MATH  Google Scholar 

  • Solé RV, Gamarra JG, Ginovart M, López D (1999) Controlling chaos in ecology: from deterministic to individual-based models. Bull Math Biol 61(6):1187–1207

    Article  MATH  Google Scholar 

  • Tung S, Mishra A, Dey S (2014) A comparison of six methods for stabilizing population dynamics. J Theor Biol 356:163–173

    Article  Google Scholar 

  • Tung S, Mishra A, Dey S (2016) Simultaneous enhancement of multiple stability properties using two-parameter control methods in Drosophila melanogaster. Ecol Complex 26:128–136

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees whose valuable comments contributed to the presentation of the results of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Braverman.

Additional information

E. Braverman was partially supported by the NSERC Research Grant RGPIN-2015-05976. D. Franco was partially supported by the Spanish Ministerio de Economía y Competitividad and FEDER, Grant MTM2013-43404-P.

Appendix

Appendix

The next result shows that VTOC and MVTOC are topologically conjugate; thus, they have the same dynamics. We recall that two maps \(\phi \) and \(\psi \) are topologically conjugate if there is a homeomorphism h such that \(\phi \circ h= h \circ \psi \).

Lemma 5

Assume \(\mathbf f :D \rightarrow D\), with D convex and \(\mathbf {T}\in D\). Then the difference Eqs. (5) and (6) are topologically conjugate.

Proof

We are going to show that the maps defining the difference Eqs. (5) and (6) are topologically conjugate. We begin by defining such maps.

Consider the map \(\varphi (\mathbf {x})=c\mathbf {T}+(1-c)\mathbf {x}\) from D to \(\varphi (D)\). Moreover, since D is convex \( \varphi (D) \subset D\) and the map \(\mathbf {f}\circ \varphi :D \rightarrow D\) is well defined. Clearly, map \(\mathbf {f}\circ \varphi \) defines the recurrent relation in Eq. (5). On the other hand, note that after the first iterate the solutions of (6) belong to \(\varphi (D)\). Therefore, we have that after the first iterate the map that defines the recurrence given by (6) is \(\varphi \circ \mathbf {f} :\varphi (D) \rightarrow \varphi (D)\).

It is easy to check that \(\varphi \) is a homeomorphism from D to \( \varphi (D)\) and obviously \((\varphi \circ \mathbf {f})\circ \varphi =\varphi \circ ( \mathbf {f}\circ \varphi )\). Hence, \(\mathbf {f}\circ \varphi \) and \(\varphi \circ \mathbf {f}\) are topologically conjugate. \(\square \)

Proof of Lemma 1

An equilibrium \(\mathbf {x}^{*}\) of VMTOC is a fixed point of the map

$$\begin{aligned} \mathbf {g(x)}= c \mathbf {T} + (1-c) \mathbf {f(x)}. \end{aligned}$$
(17)

Since \(\mathbf {T}\in \mathbb {R}^d_{+}\setminus \{\mathbf {0} \}\) and \(\mathbf {f}:\mathbb { R}^d_+\rightarrow \mathbb { R}^d_+\), we have for every \(c \in (0, 1)\) that \(c \mathbf {T} + (1-c) \mathbf {f(0)}\in \mathbb {R}^d_{+}\setminus \{\mathbf {0} \}\) and

$$\begin{aligned} \Vert \mathbf {g(0)}\Vert = \Vert c \mathbf {T} + (1-c) \mathbf {f(0)}\Vert > \Vert \mathbf {0}\Vert . \end{aligned}$$

Hence, by the continuity of \(\mathbf {g}\) and the norm, for each fixed \(c \in (0, 1)\) it is possible to find \(0<m<M\) such that

$$\begin{aligned} \Vert \mathbf {g(x)} \Vert \ge \Vert \mathbf {x}\Vert , \quad \mathbf {x}\in {\mathbb {R}}^d_{+} , \Vert \mathbf {x}\Vert =m. \end{aligned}$$

On the other hand, we have for any \(\mathbf {x}\in {\mathbb {R}}^d_{+}\) with \(\Vert \mathbf {x}\Vert \ge \max \{M,\Vert \mathbf {T}\Vert \}\),

$$\begin{aligned} \Vert \mathbf {g}(\mathbf {x})\Vert&= \Vert c \mathbf {T} + (1-c) \mathbf {f}(\mathbf {x})\Vert \le \Vert c \mathbf {T} \Vert + \Vert (1-c) \mathbf {f}(\mathbf {x})\Vert \\&= c\Vert \mathbf {T} \Vert + (1-c)\Vert \mathbf {f}(\mathbf {x})\Vert \le c\Vert \mathbf {x} \Vert + (1-c)\Vert \mathbf {x}\Vert = \Vert \mathbf {x}\Vert . \end{aligned}$$

Thus, by Krassnosel’skiĭ fixed-point theorem for cone-compressing operators (see e.g., Granas and Dugundji 2013, Theorem 7.12), the map \(\mathbf {g}\) has at least one fixed point \({\mathbf x}^{*}\) in the set

$$\begin{aligned} \left\{ \mathbf {x}\in {\mathbb {R}}^d_+ : 0<\Vert \mathbf x\Vert <\max \{M,\Vert \mathbf {T}\Vert \} \right\} \end{aligned}$$

for every \(c \in (0, 1)\).

Finally, the last statement of the lemma follows from noticing that an equilibrium \(\mathbf {x}^*\) of VMTOC satisfies

$$\begin{aligned} \mathbf {x}^*=c \mathbf {T} + (1-c) \mathbf {f}(\mathbf {x}^*). \end{aligned}$$

\(\square \)

Proof of Lemma 2

If \(\mathbf {K}=\mathbf {f}(\mathbf {K})\), we take \(\mathbf {T}_\mathbf {K}=\mathbf {K}\) and any \(c_\mathbf {K}\in (0,1)\). Let \(\mathbf {K} \ne \mathbf {f}(\mathbf {K})\). Consider the set of points

$$\begin{aligned} R = \{\mathbf {f}(\mathbf {K})+ \alpha (\mathbf {K}-\mathbf {f}(\mathbf {K})): \alpha >1\}, \end{aligned}$$

which is the ray in the direction \(\mathbf {K}-\mathbf {f}(\mathbf {K})\) starting at \(\mathbf {K}\). Using that \(\mathbf {K} \not \in \partial D\), we have that \(R\cap D\ne \emptyset \). Therefore, there exists \(\alpha >1\) such that \(\mathbf {T_K}:=\alpha \mathbf {K}+(1-\alpha )\mathbf {f(K)} \in D\). Fixing \(c_{\mathbf {K}}=\alpha ^{-1}\in (0,1)\) and noticing that

$$\begin{aligned} \mathbf {g}(\mathbf {K})=c_{\mathbf K} \mathbf {T_K}+ (1-c_\mathbf {K})\mathbf {f(K)}= & {} \alpha ^{-1} \left( \alpha \mathbf {K}+(1-\alpha )\mathbf {f(K)} \right) + (1-\alpha ^{-1})\mathbf {f(K)} \\= & {} \mathbf {K}+ \frac{1-\alpha }{\alpha } \mathbf {f(K)} + \frac{\alpha -1}{\alpha } \mathbf {f(K)} = \mathbf {K} \end{aligned}$$

concludes the proof. \(\square \)

Proof of Lemma 3

We note that it is sufficient to consider only controls \(c \in (0,1)\), since for \(c=0\) we have the original map. Let \(\phi _1(\mathbf {x})=c_1 \mathbf {T}_1+(1-c_1)\mathbf {x}\) be applied first, and next another argument transformation \(\phi _2(\mathbf {x})=c_2 \mathbf {T}_2+(1-c_2)\mathbf {x}\). Then

$$\begin{aligned} \phi _2\left( \phi _1(\mathbf {f}(\mathbf {x})) \right)= & {} c_2\mathbf {T}_2+(1-c_2) \left[ c_1\mathbf {T}_1+(1-c_1) \mathbf {f}(\mathbf {x})\right] \\= & {} c_2 \mathbf {T}_2+(1-c_2)c_1 \mathbf {T}_1+(1-c_1)(1-c_2)\mathbf {f}(\mathbf {x})= c\mathbf {T}+(1-c) \mathbf {f}(\mathbf {x}), \end{aligned}$$

where

$$\begin{aligned} c=c_1(1-c_2)+c_2, \quad \text{ and } \quad \mathbf {T}=\frac{c_1(1-c_2)}{c_1(1-c_2)+c_2} \mathbf {T}_1+\frac{c_2}{c_1(1-c_2)+c_2} \mathbf {T}_2. \end{aligned}$$

Since \(c_1,c_2 \in (0,1)\), also \(c=c_1(1-c_2)+c_2 \in (0,1)\). On the other hand, the vector \(\mathbf {T}=\alpha \mathbf {T}_1+(1-\alpha ) \mathbf {T}_2\), where \(\alpha = c_1(1-c_2)/c\in (0,1)\), therefore by the convexity of D the target \(\mathbf {T} \in D\). \(\square \)

Proof of Theorem 1

Recall that, by linearization, any equilibrium \(\mathbf {p}_c\) of VMTOC is asymptotically stable if the spectral radius of the Jacobian matrix \(J\mathbf g\) of \(\mathbf {g(x)}=c\mathbf {T}+(1-c)\mathbf {f(x)}\) at \(\mathbf {p}_c\) is smaller than 1.

By a well-known bound for the eigenvalues of a matrix (see, e.g., Horn and Johnson 2012, Corollary 6.1.5), we have that any eigenvalue \(\lambda \) of \(J\mathbf g(\mathbf {p}_c)\) satisfies

$$\begin{aligned} |\lambda | \le (1-c) \min \left\{ \max _{j=1,\ldots , d} \sum _{i=1}^{d} \left| \frac{\partial f_{j}}{\partial x_i}(\mathbf {p}_c) \right| , \max _{j=1,\ldots ,d}\sum _{i=1}^{d} \left| \frac{\partial f_{i}}{\partial x_j}(\mathbf {p}_c) \right| \right\} . \end{aligned}$$

Therefore, for \(c\in (c^*,1)\) the eigenvalues of \(J\mathbf g(\mathbf {p}_c)\) have modulus smaller than 1. \(\square \)

Proof of Theorem 2

If L in (9) satisfies \(L \in (0,1)\) and \(\mathbf {x}_n\) is a solution of (6) with an initial condition \(\mathbf {x}_0 \in D\) and \(c \in [0,1)\), then for \(n\in \mathbb {N}\)

$$\begin{aligned} \Vert \mathbf {x}_{n+1} - \mathbf {K} \Vert = \Vert c\mathbf {K} +(1-c) \mathbf {f}(\mathbf {x}_{n}) - \mathbf {K} \Vert =(1-c)\Vert \mathbf {f}(\mathbf {x}_{n})-\mathbf {K} \Vert \le L \Vert \mathbf {x}_{n}-\mathbf {K} \Vert . \end{aligned}$$

For any \(\varepsilon \in (0, \Vert \mathbf {x}_0 -\mathbf {K} \Vert )\), we have

$$\begin{aligned} \Vert \mathbf {x}_n - \mathbf {K} \Vert \le L^n \Vert \mathbf {x}_0 -\mathbf {K} \Vert < \varepsilon \hbox { whenever } n> \ln \left( \frac{\varepsilon }{\Vert \mathbf {x}_0 -\mathbf {K} \Vert } \right) \bigg / \ln L, \end{aligned}$$

so \(\mathbf {x}_n \rightarrow \mathbf {K}\) as \(n \rightarrow \infty \).

Next, let \(L\ge 1\). Denote

$$\begin{aligned} c^*= \left\{ \begin{array}{ll} 0, &{} L=1, \\ {\displaystyle 1 -\frac{1}{L}}, &{} L>1, \end{array} \right. \end{aligned}$$
(18)

and assume that \(c \in (c^*,1) \subseteq (0,1)\). Then \((1-c)L<1\), denote \(\theta =(1-c)L \in (0,1)\). We have \(1-c=\theta /L\), \(c\mathbf {T}=c\mathbf {K}\) and

$$\begin{aligned} \Vert \mathbf {x}_{n+1}-\mathbf {K} \Vert= & {} \Vert (1-c)\mathbf {f}(\mathbf {x}_n)+c\mathbf {K-K}\Vert = \Vert (1-c)[\mathbf {f}(\mathbf {x}_n)-\mathbf {K}]\Vert \\= & {} (1-c)\Vert \mathbf {f}(\mathbf {x}_n) -\mathbf {K} \Vert \nonumber \\= & {} \frac{\theta }{L} \Vert \mathbf {f}(\mathbf {x}_n)-\mathbf {K} \Vert \le \frac{\theta }{L} L \Vert \mathbf {x}_n-\mathbf {K} \Vert = \theta \Vert \mathbf {x}_n-\mathbf {K} \Vert . \nonumber \end{aligned}$$

By induction,

$$\begin{aligned} \Vert \mathbf {x}_{n+1}-\mathbf {K} \Vert \le \theta ^n \Vert \mathbf {x}_0-\mathbf {K} \Vert . \end{aligned}$$

Therefore, \(\Vert \mathbf {x}_{n+1}-\mathbf {K} \Vert< \varepsilon < \Vert \mathbf {x}_0 -\mathbf {K} \Vert \) for any \(\displaystyle n > \ln \left( \frac{\varepsilon }{\Vert \mathbf {x}_0 -\mathbf {K} \Vert } \right) \bigg / \ln \theta \). Thus, \(\lim \limits _{n \rightarrow \infty } \mathbf {x}_n=\mathbf {K}\). Moreover, \(\Vert \mathbf {x}_{n}-\mathbf {K} \Vert \) decays at least geometrically, which concludes the proof. \(\square \)

Proof of Lemma 4

Let \(M>0\) be an upper bound of \(\mathbf {f}\):

$$\begin{aligned} \Vert \mathbf {f(x)} \Vert \le M, ~~\mathbf {x} \in D. \end{aligned}$$
(19)

Since \(\mathbf {f}\) is locally Lipschitz continuous, for \(\mathbf x\) in the intersection of the ball \(\Vert \mathbf { x-K} \Vert \le \Vert \mathbf {K}\Vert \) with D, there is a constant \(\tilde{L}>0\) such that \(\Vert \mathbf {f(x)-K} \Vert \le \tilde{L} \Vert \mathbf {x-K}\Vert \). Next, let \(\mathbf {x}\in D\), \(\Vert \mathbf {x-K} \Vert > \Vert \mathbf {K}\Vert \). Then, by (19),

$$\begin{aligned} \Vert \mathbf {f(x)-K} \Vert&\le \Vert \mathbf {f(x)}\Vert + \Vert \mathbf {K} \Vert \le M + \Vert \mathbf {K} \Vert \\&= \left( \frac{M}{\Vert \mathbf {K} \Vert }+1 \right) \Vert \mathbf {K} \Vert < \left( \frac{M}{\Vert \mathbf {K} \Vert }+1 \right) \Vert \mathbf {x-K} \Vert . \end{aligned}$$

Finally, choosing

$$\begin{aligned} L= \max \left\{ \tilde{L}, \frac{M}{\Vert \mathbf {K} \Vert }+1 \right\} , \end{aligned}$$
(20)

we obtain that inequality (9) is satisfied for any \(\mathbf {x} \in D\). \(\square \)

Proof of Theorem 3

By Lemma 2 there exist \(c_{\mathbf K}\in (0,1)\) and \(\mathbf {T_K}\in D\) such that \(\mathbf {K}\) is an equilibrium of \(\mathbf {g}(\mathbf {x})=c_\mathbf {K} \mathbf {T_K}+(1-c_\mathbf {K})\mathbf {g}(\mathbf {x})\). By Lemma 4, \(\mathbf {f}\) satisfies (9) with some constant \(L_1\) instead of L. Then

$$\begin{aligned} \Vert \mathbf {g}(\mathbf {x}) - \mathbf {K} \Vert= & {} \Vert \mathbf {g}(\mathbf {x}) - \mathbf {g}(\mathbf {K}) \Vert = \Vert c_\mathbf {K} \mathbf {T_K}+(1-c_\mathbf {K})\mathbf {f(x)} - c_\mathbf {K} \mathbf {T_K}+(1-c_\mathbf {K})\mathbf {f(K)} \Vert \\= & {} (1-c_\mathbf {K}) \Vert \mathbf {f(x) - f(K)} \Vert \le (1-c_{\mathbf {K}}) L_1 \Vert \mathbf {x - K} \Vert , \end{aligned}$$

thus condition (9) holds for \(\mathbf {g}\) with \(L=(1-c_{\mathbf K})L_1\).

Now, applying Theorem 2, we obtain that there exists \(c^* \in [0,1)\) such that for \(\hat{c} \in (c^*,1)\) and \(\mathbf {T=K}\), all solutions of (6) with \(\mathbf {g}\) instead of \(\mathbf {f}\), \(\hat{c}\) instead of c and \(\mathbf {x}_0 \in D\) converge to \(\mathbf {K}\). By Lemma 3, a combination of two VMTOCs is a VMTOC. Thus, if we choose \(c=c_\mathbf {K}(1-\hat{c})+\hat{c}\), where \(\hat{c} \in (c^*,1)\), \(c_\mathbf {K}\) is defined above, and

$$\begin{aligned} \mathbf {T}=\frac{c_\mathbf {K}(1-\hat{c})}{c_\mathbf {K}(1-\hat{c})+\hat{c}} \mathbf {T_K}+\frac{\hat{c}}{c_\mathbf {K}(1-\hat{c})+\hat{c}} \mathbf {K}, \end{aligned}$$

we get that \(\mathbf {K}\) is a global attractor of the combination of VMTOCs.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braverman, E., Franco, D. Stabilization of Structured Populations via Vector Target-Oriented Control. Bull Math Biol 79, 1759–1777 (2017). https://doi.org/10.1007/s11538-017-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0305-2

Keywords

Navigation