Skip to main content
Log in

The Effects of Predator Evolution and Genetic Variation on Predator–Prey Population-Level Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator–prey systems. We do this by analyzing a general eco-evolutionary predator–prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator–prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator–prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams PA (1992) Adaptive foraging by predators as a cause of predator–prey cycles. Evol Ecol 6:56–72

    Article  Google Scholar 

  • Abrams PA (1999) The adaptive dynamics of consumer choice. Am Nat 153:83–97

    Article  Google Scholar 

  • Abrams PA (2001) Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three models. Ecol Lett 4:166–175

    Article  Google Scholar 

  • Abrams PA (2005) Adaptive Dynamics’ vs. ‘adaptive dynamics. J Evolution Biol 18:1162–1165

    Article  Google Scholar 

  • Abrams PA (2006) Adaptive change in the resource-exploitation traits of a generalist consumer: the evolution and coexistence of generalists and specialists. Evolution 60:427–439

    Google Scholar 

  • Abrams PA (2006) The effects of switching behavior on the evolutionary diversification of generalist consumers. Am Nat 168:645–659

    Article  Google Scholar 

  • Abrams PA, Kawecki TJ (1999) Adaptive host preferences and the dynamics of host-parasitoid interactions. Theor Popul Biol 56:307–324

    Article  MATH  Google Scholar 

  • Abrams PA, Matsuda H (1997) Fitness minimization and dynamic instability as a consequence of predator–prey coevolution. Evol Ecol 11:1–20

    Article  Google Scholar 

  • Abrams PA, Matsuda H (1997) Prey adaptation as a cause of predator–prey cycles. Evolution 51:1742–1750

    Article  Google Scholar 

  • Abrams PA, Matsuda H (2004) Consequences of behavioral dynamics for the population dynamics of predator–prey systems with switching. Popul Ecol 46:13–25

    Article  Google Scholar 

  • Abrams PA, Matsuda H, Harada Y (1993) Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol Ecol 7:465–487

    Article  Google Scholar 

  • Abrams PA, Vos M (2003) Adaptation, density dependence and the responses of trophic level abundances to mortality. Evol Ecol Res 5:1113–1132

    Google Scholar 

  • Agashe D (2009) The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats. Am Nat 174:255–267

    Article  Google Scholar 

  • Arnold L, Jones CKRT, Mischaikow K, Raugel G (1995) Dynamical Systems, vol. 1609, chap. Geometric Singular Perturbation Theory, pp. 44–118. Springer, Heidelberg

  • Bassar RD, Marshall MC, López-Sepulcre A, Zandonà E, Auer SK, Travis J, Pringle CM, Flecker AS, Thomas SA, Fraser DF, Reznick DN (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Nat Acad Sci 107:3616–3621

    Article  Google Scholar 

  • Becks L, Ellner SP, Jones LE, Hairston NG Jr (2010) Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol Lett 13:989–997

    Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  Google Scholar 

  • Brodie ED III, Brodie ED Jr (1999) Costs of exploiting poisonous prey: evolutionary trade-offs in a predator–prey arms race. Evolution 53:626–631

    Article  Google Scholar 

  • Bulmer MG (1975) Phase relations in the ten-year cycle. J Anim Ecol 44(2):609–621

    Article  Google Scholar 

  • Bulmer MG (1976) The theory of prey–predator oscillations. Theor Popul Biol 9:137–150

    Article  MathSciNet  MATH  Google Scholar 

  • Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132

    Article  Google Scholar 

  • Coberly LC, Wei W, Sampson KY, Millstein J, Wichman HA, Krone SM (2009) Space, time, and host evolution facilitate coexistence of competing bacteriophages: theory and experiment. Am Nat 173:E121–E138

    Article  Google Scholar 

  • Cortez MH (2011) Comparing the qualitatively different effects rapidly evolving and rapidly induced defences have on predator-prey interactions. Ecol Lett 14:202–209

    Article  Google Scholar 

  • Cortez MH (2015) Coevolution-driven predator–prey cycles: predicting the characteristics of eco-coevolutionary cycles using fast-slow dynamical systems theory. Theor Ecol 8:369–382

    Article  Google Scholar 

  • Cortez MH (2016) How the magnitude of prey genetic variation alters predator-prey eco-evolutionary dynamics. Am Nat 188:329–341

    Article  Google Scholar 

  • Cortez MH, Ellner SP (2010) Understanding rapid evolution in predator–prey interactions using the theory of fast-slow dynamical systems. Am Nat 176:E109–E127

    Article  Google Scholar 

  • Cortez MH, Weitz JS (2014) Coevolution can reverse predator–prey cycles. Proc Nat Acad Sci USA 111(20):7486–7491

    Article  Google Scholar 

  • Coutinho RM, Klauschies T, Gaedke U (2016) Bimodal trait distributions with large variances question the reliability of trait-based aggregate model. Theo Ecol 9:398–408

    Google Scholar 

  • Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968

    Article  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  MathSciNet  MATH  Google Scholar 

  • Doebeli M (1997) Genetic variation and the persistence of predator–prey interactions in the Nicholson–Bailey model. J Theor Biol 188:109–120

    Article  Google Scholar 

  • Doebeli M, Blok HJ, Leimar O, Dieckmann U (2007) Multimodal pattern formation in phenotype distributions of sexual populations. Proc R Soc Lond B Biol Sci 274:347–357

    Article  Google Scholar 

  • Ellner SP, Becks L (2011) Rapid prey evolution and the dynamics of two-predator food webs. Theor Ecol 4:133–152

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21:465–477

    Article  Google Scholar 

  • Geritz SAH, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Hiltunen T, Becks L (2014) Consumer co-evolution as an important component of the eco-evolutionary feedback. Nat Commun 5:5226

    Article  Google Scholar 

  • Hiltunen T, Hairston NG Jr, Hooker G, Jones LE, Ellner SP (2014) A newly discovered role of evolution in previously published consumer-resource dynamics. Ecol Lett 17:915–923

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  Google Scholar 

  • Imura D, Toquenaga Y, Fujii K (2003) Genetic variation can promote system persistence in an experimental host-parasitoid system. Popul Ecol 45:205–212

    Article  Google Scholar 

  • Johnson MTJ, Vellend M, Stinchcombe JR (2009) Evolution in plant populations as a drive of ecological changes in arthropod communities. P R Soc Lond B Bio 364:1593–1605

    Article  Google Scholar 

  • Jones LE, Becks L, Ellner SP, Hairston NG Jr, Yoshida T, Fussmann GF (2009) Rapid contemporary evolution and clonal food web dynamics. Philos T Roy Soc B 364(1523):1579–1591

    Article  Google Scholar 

  • Jones LE, Ellner SP (2007) Effects of rapid prey evolution on predator–prey cycles. J Math Biol 55:541–573

    Article  MathSciNet  MATH  Google Scholar 

  • Kinnison MT, Hairston NG Jr (2007) Eco-evolutionary conservation biology: contemporary evolution and dynamics of persistence. Funct Ecol 21:444–454

    Article  Google Scholar 

  • Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299(5611):1388–1391

    Article  Google Scholar 

  • Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334

    Article  Google Scholar 

  • Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63:607–615

    Article  Google Scholar 

  • Lankau R, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  Google Scholar 

  • Levin S, Udovic J (1977) A mathematical model of coevolving populations. Am Nat 111:657–675

    Article  Google Scholar 

  • Ma BO, Abrams PA, Brassil CE (2003) Dynamic versus instantaneous models of diet choice. Am Nat 162:668–684

    Article  Google Scholar 

  • Marrow P, Dieckmann U, Law R (1996) Evolutionary dynamics of predator–prey systems: an ecological perspective. J Math Biol 34:556–578

    Article  MATH  Google Scholar 

  • Mougi A (2010) Coevolution in a one predator-two prey system. PLoS One 5:e13,887

    Article  Google Scholar 

  • Mougi A (2012) Predatorprey coevolution driven by size selective predation can cause anti-synchronized and cryptic population dynamics. Theor Popul Biol 81:113–118

    Article  MATH  Google Scholar 

  • Mougi A (2013) Allelopathic adaptation can cause competitive coexistence. Theor Ecol 6:165–171

    Article  Google Scholar 

  • Mougi A (2015) Coevolution can stabilize a mutualistic interaction. Evol Ecol 30:365–377

    Article  Google Scholar 

  • Mougi A, Iwasa Y (2010) Evolution towards oscillation or stability in a predator prey system. Proc R Soc B 277:3163–3171

    Article  Google Scholar 

  • Mougi A, Iwasa Y (2011) Unique coevolutionary dynamics in a predator–prey system. J Theor Biol 277:83–89

    Article  MathSciNet  Google Scholar 

  • Palkovacs EP, Post DM (2009) Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology 98:300–305

    Article  Google Scholar 

  • Patel S, Schreiber SJ (2015) Evolutionary-driven shifts in communities with intraguild predation. Am Nat 186:E98–E110

    Article  Google Scholar 

  • Saloniemi I (1993) A coevolutionary predator–prey model with quantitative characteristics. Am Nat 141:880–896

    Article  Google Scholar 

  • Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593

    Article  Google Scholar 

  • Shaw RG, Wagenius S, Geyer CJ (2015) The susceptibility of echinacea angustifolia to a specialist aphid: eco-evolutionary perspective on genotypic variation and demographic consequences. J Ecol 103:809–818

    Article  Google Scholar 

  • Tien RJ, Ellner SP (2012) Variable cost of prey defense and coevolution in predator–prey systems. Eco Monogr 82:491–504

    Article  Google Scholar 

  • Turelli M, Barton NH (1994) Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics 138:913–941

    Google Scholar 

  • Utsumi S (2015) Feeding evolution of a herbivore influences an arthropod community through plants: implications for plant-mediated eco-evolutionary feedback loop. J Ecol 103:829–839

    Article  Google Scholar 

  • Vasseur DA, Amarasekare P, Rudolf VHW, Levine JM (2011) Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am Nat 178:E96–E109

    Article  Google Scholar 

  • Vos M, Kooi BW, DeAngelis DL, Mooij WM (2004) Inducible defences and the paradox of enrichment. Oikos 105:471–480

    Article  Google Scholar 

  • Vos M, Verschoor AM, Kooi BW, Wäckers FL, DeAngelis DL, Mooij WM (2004) Inducible defenses and trophic structure. Ecology 85(10):2783–2794

    Article  Google Scholar 

  • Yamamichi M, Ellner SP (2016) Antagonistic coevolution between quantitative and Mendelian traits. Proc R Soc B 283:20152,926

    Article  Google Scholar 

  • Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA (2015) Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics. Oikos 124:690–969

    Article  Google Scholar 

  • Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, Hairston NG Jr (2007) Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 5(9):1–12

    Article  Google Scholar 

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306

    Article  Google Scholar 

Download references

Acknowledgements

SP was supported by the American Association of University Women Dissertation Fellowship to SP and the Austrian Science Fund (FWF) Grant P25188-N25 awarded to Reinhard Burger at the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Cortez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 342 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez, M.H., Patel, S. The Effects of Predator Evolution and Genetic Variation on Predator–Prey Population-Level Dynamics. Bull Math Biol 79, 1510–1538 (2017). https://doi.org/10.1007/s11538-017-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0297-y

Keywords

Mathematics Subject Classification

Navigation