Skip to main content
Log in

The Role of Exosomes in Pancreatic Cancer Microenvironment

  • Special Issue: Mathematical Oncology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Exosomes are nanovesicles shed by cells as a means of communication with other cells. Exosomes contain mRNAs, microRNAs (miRs) and functional proteins. In the present paper, we develop a mathematical model of tumor–immune interaction by means of exosomes shed by pancreatic cancer cells and dendritic cells. Cancer cells’ exosomes contain miRs that promote their proliferation and that inhibit immune response by dendritic cells, and by CD4+ and CD8+ T cells. Dendritic cells release exosomes with proteins that induce apoptosis of cancer cells and that block regulatory T cells. Simulations of the model show how the size of the pancreatic cancer can be determined by measurement of specific miRs (miR-21 and miR-203 in the case of pancreatic cancer), suggesting these miRs as biomarkers for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L (2015) Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 4:27522

    Article  Google Scholar 

  • Bader AG, Brown D, Stoudemire J, Lammers P (2011) Developing therapeutic microRNAs for cancer. Gene Ther 18(12):1121–1126

    Article  Google Scholar 

  • Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  Google Scholar 

  • Berktas M, Guducuoglu H, Bozkurt H, Onbasi KT, Kurtoglu MG, Andic S (2004) Change in serum concentrations of interleukin-2 and interferon-gamma during treatment of tuberculosis. J Int Med Res 32(3):324–330

    Article  Google Scholar 

  • Celik O, Kutlu O, Tekcan M, Celik-Ozenci C, Koksal IT (2013) Role of TNF-related apoptosis-inducing ligand (TRAIL) in the pathogenesis of varicocele-induced testicular dysfunction. Asian J Androl 15(2):269–274

    Article  Google Scholar 

  • Cheng W, Liu F, Wang Z, Zhang Y, Zhao YX, Zhang Q, Jiang F (2015) Soluble TRAIL concentration in serum is elevated in people with hypercholesterolemia. PLoS ONE 10(12):e0144015

    Article  Google Scholar 

  • Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111(41):14888–14893

    Article  Google Scholar 

  • Cosio MG, Majo J, Cosio MG (2002) Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest 121(5 Suppl):160S–165S

    Article  Google Scholar 

  • Coventry BJ, Lee PL, Gibbs D, Hart DN (2002) Dendritic cell density and activation status in human breast cancer: CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer 86(4):546–551

    Article  Google Scholar 

  • Day J, Friedman A, Schlesinger LS (2009) Modeling the immune rheostat of macrophages in the lung in response to infection. Proc Natl Acad Sci USA 106(27):11246–11251

    Article  Google Scholar 

  • de Sousa Cavalcante L, Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16

    Article  Google Scholar 

  • Derin D, Soydinc HO, Guney N, Tas F, Camlica H, Duranyildiz D, Yasasever V, Topuz E (2007) Serum IL-8 and IL-12 levels in breast cancer. Med Oncol 24(2):163–168

    Article  Google Scholar 

  • Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, Xiang J, Wu Z, Jiang G, Cao L (2015) Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. doi:10.18632/oncotarget.4924

  • Eden U, Fagerholm P, Danyali R, Lagali N (2012) Pathologic epithelial and anterior corneal nerve morphology in early-stage congenital aniridic keratopathy. Ophthalmology 119(9):1803–1810

    Article  Google Scholar 

  • Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13(10):2836–2848

    Article  Google Scholar 

  • Fadeev RS, Chekanov AV, Dolgikh NV, Akatov VS (2012) Increase in resistance of A431 cancer cells to TRAIL-induced apoptosis in confluent cultures. Biofizika 57(4):649–654

    Google Scholar 

  • Falcone G, Felsani A, D’Agnano I (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32

    Article  Google Scholar 

  • Gercel-Taylor C, Atay S, Tullis RH, Kesimer M, Taylor DD (2012) Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem 428(1):44–53

    Article  Google Scholar 

  • Halkova T, Cuperkova R, Minarik M, Benesova L (2015) MicroRNAs in pancreatic cancer: involvement in carcinogenesis and potential use for diagnosis and prognosis. Gastroenterol Res Pract 2015:892903

    Article  Google Scholar 

  • Hao W, Crouser ED, Friedman A (2014) Mathematical model of sarcoidosis. Proc Natl Acad Sci USA 111(45):16065–16070

    Article  MathSciNet  MATH  Google Scholar 

  • Hao W, Friedman A (2014) The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE 9(3):e90497

    Article  Google Scholar 

  • Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, Schmidt D, Hoh R, Neese R, Macallan D, Deeks S, McCune JM (1999) Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 5(1):83–89

    Article  Google Scholar 

  • Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM (2008) IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 181(12):8576–8584

    Article  Google Scholar 

  • Hosgood HD, Zhang L, Tang X, Vermeulen R, Qiu C, Shen M, Smith MT, Ge Y, Ji Z, Xiong J, He J, Reiss B, Liu S, Xie Y, Guo W, Galvan N, Li L, Hao Z, Rothman N, Huang H, Lan Q (2011) Decreased numbers of CD4(+) naive and effector memory T cells, and CD8(+) naive T cells, are associated with trichloroethylene exposure. Front Oncol 1:53

    Google Scholar 

  • Ikenaga N, Ohuchida K, Mizumoto K, Yu J, Kayashima T, Sakai H, Fujita H, Nakata K, Tanaka M (2010) MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann Surg Oncol 17(12):3120–3128

    Article  Google Scholar 

  • Kang R, Tang D, Schapiro NE, Loux T, Livesey KM, Billiar TR, Wang H, Van Houten B, Lotze MT, Zeh HJ (2014) The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33(5):567–577

    Article  Google Scholar 

  • Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, Kosuga T, Iitaka D, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E (2011) Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer 105(1):104–111

    Article  Google Scholar 

  • Liao KL, Bai XF, Friedman A (2014) Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS ONE 9(3):e91844

    Article  Google Scholar 

  • Liao KL, Bai XF, Friedman A (2014) Mathematical modeling of Interleukin-35 promoting tumor growth and angiogenesis. PLoS ONE 9(10):e110126

    Article  Google Scholar 

  • Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF, Wang XZ (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015:657086

    Google Scholar 

  • Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4(1):36–44

    Article  Google Scholar 

  • MacGill M (2013) Pancreatic cancer: chemo drug Gemzar improves survival rates. Medical News Today

  • Mantegazza AR, Zajac AL, Twelvetrees A, Holzbaur EL, Amigorena S, Marks MS (2014) TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci USA 111(43):15508–15513

    Article  Google Scholar 

  • McDonald D (2010) Understanding miRNA turnover: a study of miRNA half-life. Broad Insitute, Cambridge

    Google Scholar 

  • Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721

    Article  Google Scholar 

  • Merino D, Lalaoui N, Morizot A, Solary E, Micheau O (2007) TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 11(10):1299–1314

    Article  Google Scholar 

  • Michalaki V, Syrigos K, Charles P, Waxman J (2004) Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90(12):2312–2316

    Article  Google Scholar 

  • Muller N, Schneider B, Pfizenmaier K, Wajant H (2010) Superior serum half life of albumin tagged TNF ligands. Biochem Biophys Res Commun 396(4):793–799

    Article  Google Scholar 

  • Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL (2012) Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 1(7):1074–1083

    Article  Google Scholar 

  • Oliver JC, Bland LA, Oettinger CW, Arduino MJ, McAllister SK, Aguero SM, Favero MS (1993) Cytokine kinetics in an in vitro whole blood model following an endotoxin challenge. Lymphokine Cytokine Res 12(2):115–120

    Google Scholar 

  • Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  Google Scholar 

  • Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42(6):363–369

    Article  Google Scholar 

  • Pilch J, Namysłowski G, Scierski W, Urbaniec P, Sowińska-Krzyzanowska I (2006) Interleukin 2 concentration changes in the laryngeal cancer patients during the surgical treatment. Otolaryngol Pol 60(3):331–336

    Google Scholar 

  • Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7(5):769–778

    Article  Google Scholar 

  • Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS (2011) Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE 6(1):e16245

    Article  Google Scholar 

  • Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    Article  Google Scholar 

  • Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS (2010) MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 10:27

    Article  Google Scholar 

  • Riches A, Campbell E, Borger E, Powis S (2014) Regulation of exosome release from mammary epithelial and breast cancer cells: a new regulatory pathway. Eur J Cancer 50(5):1025–1034

    Article  Google Scholar 

  • Ru P, Steele R, Hsueh EC, Ray RB (2011) Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2(7):720–727

    Article  Google Scholar 

  • Saenz R, Futalan D, Leutenez L, Eekhout F, Fecteau JF, Sundelius S, Sundqvist S, Larsson M, Hayashi T, Minev B, Carson D, Esener S, Messmer B, Messmer D (2014) TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med 12:211

    Article  Google Scholar 

  • Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, Calatayud D, Nielsen SE, Yilmaz M, Hollander NH, Andersen KK, Johansen JS (2014) MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA 311(4):392–404

    Article  Google Scholar 

  • Sheen-Chen SM, Chen WJ, Eng HL, Chou FF (1997) Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Res Treat 43(3):211–215

    Article  Google Scholar 

  • Shui YB, Wang X, Hu JS, Wang SP, Garcia CM et al (2003) Vascular endothelial growth factor expression and signaling in the lens. Invest Ophthalmol Vis Sci 44(9):3911–3919

    Article  Google Scholar 

  • Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P (2013) Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 21(5):986–994

    Article  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  Google Scholar 

  • Sonkoly E, Wei T, Pavez Lorie E, Suzuki H, Kato M, Torma H, Stahle M, Pivarcsi A (2010) Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 130(1):124–134

    Article  Google Scholar 

  • Sonkoly E, Loven J, Xu N, Meisgen F, Wei T, Brodin P, Jaks V, Kasper M, Shimokawa T, Harada M, Heilborn J, Hedblad MA, Hippe A, Grander D, Homey B, Zaphiropoulos PG, Arsenian-Henriksson M, Stahle M, Pivarcsi A (2012) MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis 1:e3

    Article  Google Scholar 

  • Szomolay B, Eubank T, Roberts RD, Marsh CB, Friedman A (2012) Modeling the inhibition of breast cancer growth by GM-CSF. J Theor Biol 303:141–151

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M, Baba H (2013) Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119(6):1159–1167

    Article  Google Scholar 

  • Tang D, Kang R, Zeh HJ, Lotze MT (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799(1–2):131–140

    Article  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  Google Scholar 

  • Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN (1998) Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4(3):585–593

    Google Scholar 

  • Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108(1):253–261

    Article  Google Scholar 

  • Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 169(1):333–338

    Article  Google Scholar 

  • Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y (2010) miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 127(5):1106–1114

    Article  Google Scholar 

  • Wang C, Zheng X, Shen C, Shi Y (2012) MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. J Exp Clin Cancer Res 31:58

    Article  Google Scholar 

  • Whitcomb DC (2004) Inflammation and Cancer V. Chronic pancreatitis and pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 287(2):G315–319

    Article  Google Scholar 

  • Whiteside TL (2013) Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 41(1):245–251

    Article  Google Scholar 

  • Xu M, Gu M, Zhang K, Zhou J, Wang Z, Da J (2015) miR-203 inhibition of renal cancer cell proliferation, migration and invasion by targeting of FGF2. Diagn Pathol 10:24

    Article  Google Scholar 

  • Young ME, Carroad PA, Bell RL (1980) Estimation of diffusion coefficients of proteins. Biotechnol Bioeng 22(5):947–955

    Article  Google Scholar 

  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015a) Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform 13(1):17–24

    Article  Google Scholar 

  • Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015b) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83

    Article  Google Scholar 

  • Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L (2014) Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 292(1–2):65–69

    Article  Google Scholar 

  • Zoller M (2013) Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 4(4):74–90

    Article  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the Mathematical Biosciences Institute and the National Science Foundation under Grant DMS 0931642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A., Hao, W. The Role of Exosomes in Pancreatic Cancer Microenvironment. Bull Math Biol 80, 1111–1133 (2018). https://doi.org/10.1007/s11538-017-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0254-9

Keywords

Navigation