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                    Abstract
We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.
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                    Notes
	Not to be confused with “phylogenetic invariants”; the distinction will be discussed below.


	Illustrative examples of flattenings are given in the introduction of Allman and Rhodes (2008).


	If one prefers to use unit row-sum Markov matrices, an analogous construction is obtained by taking the transpose in what follows.


	The meaning of this will be given in the proof of Theorem 1.


	In fact, this the natural way to define 
                                 \(\text {Aff}(k-1)\) in the first place.


	Exactly how this affects the site pattern probabilities \(p_{i_1i_2\ldots i_L}\) is given in the Appendix (11).
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Appendix: Proof of Theorem 2
                        
Appendix: Proof of Theorem 2
                        
Our general approach to the proof will be to give conditions for when the rank of the subflattenings does or does not grow under phylogenetic divergence events. In particular, we will show that the rank of the subflattenings is unchanged after a phylogenetic divergence event which is “consistent” with the split under consideration (the precise meaning of this will become evident below). Although related, our proof method is different in conception from the approach taken in Eriksson (2005) for obtaining the analogous conditions for the ranks of the full flattenings.

                  Definition 2

                  Given a rooted tree \({\mathcal {T}}\), consider the subtrees consisting of a vertex in \({\mathcal {T}}\) together with all of its descendants (including the case where the subtree consists of a leaf vertex only). Given a subset A of leaves, we say such a subtree is A-consistent if its leaves are a subset of A. We say an A-consistent subtree is maximally A-consistent if it is not itself a subtree of an A-consistent subtree. Similarly, given a split A|B we say that a subtree is A|B-consistent if its leaves are a subset of A 
                              or 
                              B; together with the corresponding definition of maximally A|B-consistent.

                An example is given in Fig. 2.
Fig. 2[image: figure 2]
A rooted tree with two maximally \(A|B=\{2,3,4,6\}|\{1,5,7,8,9,10\}\) consistent subtrees indicated. The subtree with leaf set \(\{3,4\}\) is A-consistent, but not maximally so


Full size image


                        
                  Lemma 1

                  If P is a pattern distribution arising from a tree \({\mathcal {T}}\) under the general Markov model, the rank of the subflattening \(\widehat{\mathrm{Flat}}'_{A|B}(P)\) is independent of the size and/or structure of any A|B-consistent subtrees of \({\mathcal {T}}\).

                
                  Proof

                  Consider the molecular state space \(\kappa =\{1,2,\ldots ,k\}\) and a site pattern probability distribution \(p_{i_1i_2\ldots i_L}\) on L taxa. Suppose this distribution arises under the general Markov model on the tree \({\mathcal {T}}\) and subsequently a time-instantaneous divergence event occurs causing, without loss of generality, a copy of the Lth taxon to be created. Under the usual assumptions of this model, this results in a new distribution \(P^+=(p^+_{i_1i_2\ldots i_{L}i_{L+1}})_{i_j\in \kappa }\) on an \(L+1\) taxon tree \({\mathcal {T}}^+\), with
$$\begin{aligned} \begin{aligned} p^+_{i_1i_2\ldots i_{L}i_{L+1}}= \left\{ \begin{array}{ll} p_{i_1i_2\ldots i_L}&{}\quad \text {if}\,i_{L}=i_{L+1};\\ 0,&{}\quad \text {otherwise.} \end{array} \right. \end{aligned} \end{aligned}$$

                    (10)
                

Consider a split A|B and suppose taxon L is contained in B. Consider the new split \(A|B'\) where the new taxon \(L+1\) has been adjoined to B to produce \(B'=B\cup \{L+1\}\). We will show that the subflattening \(\widehat{\text {Flat}}'_{A|B'}(P^+)\) is obtained from \(\widehat{\text {Flat}}'_{A|B}(P)\) by simply repeating \(k-1\) columns.

                  Let S be any \(k\times k\) matrix consistent with the similarity transformation (4). In particular, this means that the kth row of S is constant, and, without loss of generality, we will assume this is a row of 1s, i.e. \(S_{kj}=1\) for \(j=1,2,\ldots , k\). We denote the application of this similarity transformation to the site pattern distribution as
$$\begin{aligned} \begin{aligned} q_{i_1i_2\ldots i_L}:=\sum _{j_1,j_2\ldots ,j_L\in \kappa }S_{i_1j_1}S_{i_2j_2}\ldots S_{i_Lj_L}p_{j_1j_2\ldots j_L}. \end{aligned} \end{aligned}$$

                    (11)
                

We will refer to these quantities as the “q-coordinates”.

                  Now suppose, without loss of generality, \(A|B=\{1,2,\ldots ,m\}|\{m+1,m+2,\ldots ,L\}\), and write \(q_{i_1i_2\ldots i_m,j_1j_2\ldots j_n}\) to emphasize the flattening corresponding to this split. After locating the rows and columns which define the form (5), the \((m(k-1)+1)\times (n(k-1)+1)\) entries of the subflattening are seen to be given by
[image: ]

                    (12)
                

We now consider the effect of the divergence rule (10) on the q-coordinates. Again we suppose that the divergence event occurs on the Lth taxon. As a consequence of (10), a short computation shows that
$$\begin{aligned} q^+_{i_1i_2\ldots i_m, j_{1}j_2\ldots j_{n-1}j_nj_{n+1} } =\sum _{j,j'\in \kappa }S_{j_n j}S_{j_{n+1}j}S^{-1}_{jj'}q_{i_1i_2\ldots i_m, j_1j_2\ldots j_{n-1}j'}. \end{aligned}$$

To construct \(\widehat{\text {Flat}}'_{A|B}(P^+)\), we must consider three cases (recalling that we are assuming \(S_{kj}=1\) for each \(j=1,2,\ldots ,k\)):
	
                        (i)
                        
                          Suppose \(j_n=j_{n+1}= k\). Then 
$$\begin{aligned} q^+_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}kk }=q_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}k}. \end{aligned}$$


                                       
                        
                      
	
                        (ii)
                        
                          Suppose \(j_n=k\) and \(j_{n+1}\ne k\). Then 
$$\begin{aligned} q^+_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}kj_{n+1} }=q_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}j_{n+1}}. \end{aligned}$$


                                       
                        
                      
	
                        (iii)
                        
                          Suppose \(j_n\ne k\) and \(j_{n+1}= k\). Then 
$$\begin{aligned} q^+_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}j_nk }=q_{i_1i_2\ldots i_m,j_1j_2\ldots j_{n-1}j_{n}}. \end{aligned}$$


                                       
                        
                      

In particular, for each choice \(j=1,2,\ldots k-1\),
[image: ]

Comparing to the general form (12), we see that the subflattening \(\widehat{\text {Flat}}_{A|B'}'(P^+)\) is produced from the subflattening \(\widehat{\text {Flat}}_{A|B}'(P)\) by simply repeating \(k-1\) columns. This observation holds more generally, independently of which taxon the divergence event occurs on. The only modification needed is when the divergence happens on the left side of the split A|B, in which case the new subflattening is obtained from the old by a repetition of rows rather than columns. Thus, if we place a new taxon into the same side of the split as the taxon it diverged from, the rank of the subflattening is preserved.

                  We now apply Corollary 1 to conclude that, in the generic case, further application of (full rank) Markov matrices at the leaves of the phylogenetic tree \({\mathcal {T}}^+\) also does not affect the rank of the subflattening.

                  These observations establish the lemma. \(\square \)
                           

                Now in order to determine the rank of an arbitrary subflattening, we may repeatedly apply Lemma 1 to reduce to the case where each A|B-consistent subtree is a single leaf. Assuming this situation, each leaf is then either (i) not part of a cherry, or (ii) part of a cherry where the two leaves in the cherry lie on complementary sides of the split A|B. A key feature of this situation is that we can label the descendants of every vertex (excluding the root) with complementary binary labels such that the leaf labels are consistent with the split A|B. For our purposes, we then consider this reduced case as arising from a sequence of divergence events from the base two-taxa case where, after each divergence event at a leaf, the two descendants are placed into complementary sides of the target split A|B. An example illustrating that this process is always possible is given in Fig. 3.
Fig. 3[image: figure 3]
Given a tree \({\mathcal {T}}\) and a split A|B on its leaf set, leaves belonging to A are labelled by “\(+\)” and leaves in B are labelled by “−”. The tree is reduced by removing any A|B-consistent subtrees, and binary labels are attached to the vertices (excluding the root) such that the descendants of each vertex obtain complementary labels and the leaf labels are consistent with the split A|B. In the case illustrated, the second step follows as a consequence of the two leaves that are not part of a cherry. Step 1 Reduce each maximally A|B consistent subtree to a leaf. Step 2 Label each internal vertex (excluding the root) consistently so descendants of internal vertices are distinctly labelled. Step 3 Arbitrarily resolve any remaining ambiguities
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                        We use this process to establish:

                  Lemma 2

                  Suppose \({\mathcal {T}}\) is a tree, suppose P is a distribution arising on \({\mathcal {T}}\) under the general Markov model, and suppose A|B is a split such that the maximally A|B-consistent subtrees are all leaves. Then, in the generic case, the subflattening \(\widehat{\mathrm{Flat}}'_{A|B}(P)\) has maximal rank.

                
                  Proof

                  Suppose such a reduced tree has q-coordinates \(q_{i_1i_2\ldots i_m,j_1j_2\ldots j_n}\), and the nth taxon in B diverges creating a new taxon which is adjoined to A to form the new split \(A'|B\). Analogous to the previous situation, we have the new q-coordinates
$$\begin{aligned} q^+_{i_1i_2\ldots i_mi_{m+1},j_1j_2\ldots j_n}=\sum _{j,j'=1}^kS_{i_{m+1}j}S_{j_{n}j}S_{jj'}^{-1}q_{i_1i_2\ldots i_{m},j_1j_2\ldots j_{n-1}j'}. \end{aligned}$$

From this, we see that the additional \(k-1\) rows in the subflattening \(\widehat{\text {Flat}}'_{A'|B}(P^+)\) are obtained by setting \(i_1=i_2=\cdots =i_m=k\), and taking \(i_{m+1}=1,2,\ldots ,k-1\) in
$$\begin{aligned} q^+_{kk\ldots ki_{m+1},j_1j_2\ldots j_n}=\sum _{j,j'=1}^kS_{i_{m+1}j}S_{j_{n}j}S_{jj'}^{-1}q_{kk\ldots k,j_1j_2\ldots j_{n-1}j'}, \end{aligned}$$

where the columns are indexed by choosing \(b\in \{1,2,\ldots ,n\}\) so that at most a single \(j_b\ne k\) at a time. In particular, if we choose \(j_1\ne k\) and \(j_2=j_3=\cdots =j_n=k\) we have
$$\begin{aligned} q^+_{kk\ldots ki_{m+1},j_1kk\ldots k}=q_{kk\ldots k,j_1kk\ldots ki_{m+1}}. \end{aligned}$$

Now for each choice \(i_{m+1}=1,2,\ldots , k-1\), this expression gives q-coordinates which do not appear in the subflattening \(\widehat{\text {Flat}}_{A|B}'(P)\) or any of the other rows of \(\widehat{\text {Flat}}'_{A'|B}(P^+)\). It follows that any linear dependencies between the new and remaining rows in \(\widehat{\text {Flat}}'_{A'|B}(P^+)\) would imply linear constraints on the q-coordinates on the original \(m+n\) taxon tree. In turn, this would imply the existence of linear phylogenetic invariants for the general Markov model, which are known not to exist (Hagedorn 2000). Therefore, the new rows appearing in \(\widehat{\text {Flat}}'_{A'|B}(P^+)\) are linearly independent from the rest.

                  To complete the proof, we use induction on the base case of a two-taxon tree. To establish this base case, we show that, in the generic case, the two-taxon subflattening on the split \(A|B=\{1\}|\{2\}\) has full rank \(k=(k-1)+1\). This follows easily since, in the two-taxon case, the subflattening is equal to the transformed flattening, that is
$$\begin{aligned} \widehat{\text {Flat}}'_{\{1\}|\{2\}}(P)= \text {Flat}'_{\{1\}|\{2\}}(P)=S\text {Flat}(P)_{\{1\}|\{2\}}S^{-1}. \end{aligned}$$

Thus, the subflattening is related by the similarity transformation S to the flattening \(\text {Flat}(P)_{\{1\}|\{2\}}\), which a standard argument shows can be expressed as
$$\begin{aligned} \text {Flat}_{\{1\}|\{2\}}(P)=M_1D(\pi )M_2^T, \end{aligned}$$

where \(D(\pi )\) is the diagonal matrix formed from the root distribution \(\pi =(\pi _i)_{i\in \kappa }\). Clearly this matrix is full rank if \(M_1\) and \(M_2\) are full rank and \(\pi \) has no zero entries. Thus, in the generic case, the two-taxon subflattening \(\widehat{\text {Flat}}'_{1|2}(P)\) has full rank.

                  Induction on this base case establishes the lemma. \(\square \)
                           

                With these results in hand, Theorem 2 follows for arbitrary trees and splits by the following three steps:
	
                      (i)
                      
                        Apply Lemma 1 and clip off any A|B-consistent subtrees;

                      
                    
	
                      (ii)
                      
                        Apply Lemma 2; and

                      
                    
	
                      (iii)
                      
                        Use Fitch’s algorithm (Felsenstein 2004; Fitch 1971) to recognize that the minimum of the number of maximally A- and B-consistent subtrees is none other than the parsimony score for the split A|B considered as a binary character at the leaves of \({\mathcal {T}}\).
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