Skip to main content

Advertisement

Log in

A Mathematical Model of Anthrax Transmission in Animal Populations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number \(\mathcal {R}_0\) is calculated, and existence of a unique endemic equilibrium is established for \(\mathcal {R}_0\) above the threshold value 1. Using data from the literature, elasticity indices for \(\mathcal {R}_0\) and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if \(\mathcal {R}_0 < 1\). For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with \(\mathcal {R}_0>1\) and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beyer W, Turnbull PCB (2009) Anthrax in animals. Mol Aspects Med 30:481–489

    Article  Google Scholar 

  • Chakraborty A, Khan SU, Hasnat MA, Parveen S, Islam MS, Mikolon A, Chakraborty RK, Ahmed BN, Ara K, Haider N, Zaki SR, Hofmaster AR, Rahman M, Luby SP, Hossain MJ (2012) Anthrax outbreaks in Bangladesh, 2009–2010. Am J Trop Med 86:703–710

    Article  Google Scholar 

  • Clegg SB, Turnbull PCB, Foggin CM, Lindeque PM (2007) Massive outbreak of anthrax in wildlife in the Malilangwe Wildlife Reserve, Zimbabwe. Vet Rec 160:113–118

    Article  Google Scholar 

  • De Vos V, Bryden HB (1996) Anthrax in the Kruger National Park: temporal and spatial patterns of disease occurrence. Salisb Med Bull 87:26–30

    Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Wiley, West Sussex

    MATH  Google Scholar 

  • Dragon DC, Elkin BT, Nishi JS, Ellsworth TR (1999) A review of anthrax in Canada and implications for research on the disease in northern bison. J Appl Microbiol 87:208–213

    Article  Google Scholar 

  • Dragon DC, Elkin BT (2001) An overview of early anthrax outbreaks in Northern Canada: field reports of the health animals branch, Agriculture, Canada, 1962–1971. Artic 54:32–40

    Google Scholar 

  • Dragon DC, Rennie RP (1995) The ecology of anthrax spores: tough but not invincible. Can Vet J 36:295–301

    Google Scholar 

  • Fasanella A, Galante A, Garofolo G, Jones MH (2010) Anthrax undervalued zoonosis. Vet Microbiol 140:318–331

    Article  Google Scholar 

  • Friedman A, Yakubu A-A (2013) Anthrax epizootic and migration: persistence or extinction. Math Biosci 241:137–144

    Article  MathSciNet  MATH  Google Scholar 

  • Furniss PR, Hahn BD (1981) A mathematical model of an anthrax epizootic in the Kruger National Park. Appl Math Model 5:130–136

    Article  Google Scholar 

  • Hahn BD, Furniss PR (1983) A mathematical model of anthrax epizootic: threshold results. Ecol Model 20:233–241

    Article  Google Scholar 

  • Heesterbeek JAP, Roberts MG (2007) The type-reproduction number T in models for infectious disease control. Math Biosci 206:3–10

    Article  MathSciNet  MATH  Google Scholar 

  • Horn RA, Johnson CR (1990) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Keim P, Smith KL (2002) Bacillus anthracis evolution and epidemiology. Curr Top Microbiol Immunol 271:21–32

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems, regional conference series in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  • Lembo T, Hampson K, Authy H, Beesley CA, Bessell P, Packer C, Halliday J, Fyumagwa R, Hoare R, Ernest E, Mentzel C, Mlengeya T, Stamey K, Wilkins PP, Cleaveland S (2011) Serologic surveillance of anthrax in the Serengeti ecosystem, Tanzania, 1996–2009. Emerg Infect Dis 17:387–394

    Article  Google Scholar 

  • Lewerin SS, Elvaander M, Westermark T, Hartzell LN (2010) Anthrax outbreak in Swedish beef cattle herd-1st case in 27 years: case report. Acta Vet Scand 52:7

    Article  Google Scholar 

  • Logan NA, De Vos P (2009) Genus I, Bacillus Cohn, 1872, 174AL. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York

    Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300

    Article  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  Google Scholar 

  • Mongoh MN, Dyer NW, Stoltenow CL, Khaitsa ML (2008) Risk factors associated with anthrax outbreaks in animals in North Dakota, 2005: a retrospective case-control study. Public Health Rep 123:352–359

    Google Scholar 

  • Munang’andu HM, Banda F, Siamudaala VM, Munyeme Kasanga CJ, Hamududu R (2012) The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J Vet Sci 13:293–298

    Article  Google Scholar 

  • Mushayabasa S, Marijani T, Masocha M (2015) Dynamical analysis and control strategies in modeling anthrax. Comp Appl Math. doi:10.1007/s40314-015-0297-1

    Google Scholar 

  • Roberts MG, Heesterbeek JAP (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc B 270:1359–1364

    Article  Google Scholar 

  • Saad-Roy CM, Shuai Z, van den Driessche P (2015) Models of bovine babesiosis including juvenile cattle. Bull Math Biol 77:514–547

    Article  MathSciNet  MATH  Google Scholar 

  • Schelling E, Bechir M, Ahmed MA, Wyss K, Randolph TF, Zinsstag J (2007) Human and animal vaccination delivery to remote nomadic families. Chad Emerg Infect Dis 13:373–379

    Article  Google Scholar 

  • Shuai Z, van den Driessche P (2013) Global stability of infectious disease models using Lyapunov functions. SIAM J Appl Math 73:1513–1532

    Article  MathSciNet  MATH  Google Scholar 

  • Turner WC, Imologhome P, Havarua Z, Kaaya GP, Mfune JKE, Mpofu IDT, Getz WM (2013) Soil ingestion, nutrition and the seasonality of anthrax in herbivores of Etosha National Park. Ecosphere 4:1–19

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Vandermeer JH, Goldberg DE (2013) Population ecology: first principles, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • World Health Organization (WHO), International Office of Epizootics (2008) Anthrax in humans and animals. World Health Organization, Geneva

    Google Scholar 

  • Wright JG, Quinn CP, Shadomy S, Messonier N (2010) Use of anthrax vaccine in the United States, recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009. Morb Mortal Wkly Report 59:1–30

    Google Scholar 

Download references

Acknowledgements

P.vdD. and A.-A.Y. would like to acknowledge the 2nd UNISA-UP workshop where the idea for this model arose. This research was partially supported by NSERC, through a USRA (C.M.S.-R.) and a Discovery Grant (P.vdD.). A.-A.Y. was partially supported by DHS Center Of Excellence for Command, Control and Interoperability at Rutgers University and NSF Computational Sustainability Grant # CCF - 1522054. The authors thank two anonymous reviewers for careful reading and good suggestions, which have improved our exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Saad-Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad-Roy, C.M., van den Driessche, P. & Yakubu, AA. A Mathematical Model of Anthrax Transmission in Animal Populations. Bull Math Biol 79, 303–324 (2017). https://doi.org/10.1007/s11538-016-0238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0238-1

Keywords

Mathematics Subject Classification

Navigation