Skip to main content

Advertisement

Log in

Optimal Culling and Biocontrol in a Predator–Prey Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Invasive species cause enormous problems in ecosystems around the world. Motivated by introduced feral cats that prey on bird populations and threaten to drive them extinct on remote oceanic islands, we formulate and analyze optimal control problems. Their novelty is that they involve both scalar and time-dependent controls. They represent different forms of control, namely the initial release of infected predators on the one hand and culling as well as trapping, infecting, and returning predators on the other hand. Combinations of different control methods have been proposed to complement their respective strengths in reducing predator numbers and thus protecting endangered prey. Here, we formulate and analyze an eco-epidemiological model, provide analytical results on the optimal control problem, and use a forward–backward sweep method for numerical simulations. By taking into account different ecological scenarios, initial conditions, and control durations, our model allows to gain insight how the different methods interact and in which cases they could be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen LJS (2007) An introduction to mathematical biology. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Anderson R, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil Trans R Soc Lond 314:533–570

    Article  Google Scholar 

  • Bate AM, Hilker FM (2013) Complex dynamics in an eco-epidemiological model. Bull Math Biol 75:2059–2078

    Article  MathSciNet  MATH  Google Scholar 

  • Bester MN, Bloomer JP, van Aarde RJ, Erasmus BH, van Rensburg PJJ, Skinner JD, Howell PG, Naude TW (2002) A review of the successful eradication of feral cats from sub-Antarctic Marion Island, Southern Indian Ocean. S Afr J Wildl Res 32:65–73

    Google Scholar 

  • Chaphuis J, Bousses P, Barnaud G (1994) Alien mammals, impact and management in the French sub-antarctic islands. Biol Conserv 67:97–104

    Article  Google Scholar 

  • Chaphuis JL (1995) Alien mammals in the French Subantarctic Islands. In: Dingwall PR (ed) Progress in conservation of the subantarctic islands, conservation of the southern polar region, vol 2. The World Conservation Union, Paimpont, pp 127–132

  • Cleaveland S, Thirgood S, Laurenson K (1999) Pathogens as allies in island conservation? Trends Ecol Evol 14:83–84

    Article  Google Scholar 

  • Courchamp F, Pontier P (1994) Feline immunodeficiency virus: an epidemiological review. C R Acad Sci Paris Sér III Sci Vie 317:1123–1134

    Google Scholar 

  • Courchamp F, Sugihara G (1999) Modeling the biological control of an alien predator to protect island species from extinction. Ecol Appl 9:112–123

    Article  Google Scholar 

  • Courchamp F, Pontier D, Langlais M (1995) Population dynamics of feline immunodeficiency virus within cat populations. J Theor Biol 175:553–560

    Article  Google Scholar 

  • Courchamp F, Yoccoz NG, Artois M, Pontier D (1998) At-risk individuals in feline immunodeficiency virus epidemiology: evidence from multivariate approach in a natural population of domestic cats (feline catus). Epidemiol Infect 121:227–236

    Article  Google Scholar 

  • Courchamp F, Langlais M, Sugihara G (1999) Cats protecting birds: modelling the mesopredator release effect. J Anim Ecol 68:282–292

    Article  Google Scholar 

  • Courchamp F, Say L, Pontier D (2000) Transmission of feline immunodeficiency virus in a population of cats. Wildl Res 27:227–236

    Article  Google Scholar 

  • Courchamp F, Chapuis JL, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78:347–383

    Article  Google Scholar 

  • Diamond J (1989) Overview of recent extinctions. In: Western D, Pearl MC (eds) Conservation for the twenty-first century. Oxford University Press, New York, pp 37–41

    Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New York

    MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Dietz K, Heesterbeek JAP (1991) The basic reproduction ratio for sexually transmitted diseases: theoretical considerations. Math Biosci 107:325–339

    Article  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Robert MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 9:873–885

    Article  Google Scholar 

  • Diekmann O, Heesterbeek H, Britton T (2013) Mathematical tools for understanding infectious disease dynamics. Princeton University Press, New Jersey

    MATH  Google Scholar 

  • Dobson AP (1988) Restoring island ecosystems: the potential of parasites to control introduced mammals. Conserv Biol 3:31–38

    Article  Google Scholar 

  • Driessche PVD, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Fan M, Kuang Y, Feng Z (2005) Cats protecting birds revisited. Bull Math Biol 167:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzgerald BM, Turner DC (2000) Hunting behaviour of domestic cats and their impact on prey populations. In: Turner DC, Bateson P (eds) The domestic cat: the biology of its behaviour, 2nd edn. Cambridge University Press, Cambridge, pp 151–175

    Google Scholar 

  • Fromont E, Pontier D, Langlais M (1998) Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure. Proc R Soc Lond B 265:1097–1104

    Article  Google Scholar 

  • Gaff H, Schaefer E (2009) Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math Biosci Eng 6:469–492

    Article  MathSciNet  MATH  Google Scholar 

  • Hackbusch W (1978) A numerical method for solving parabolic equations with opposite orientations. Computing 20:229–240

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler KP, Freedman HI (1989) Predator–prey populations with parasite infection. J Math Biol 27:609–631

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmann K (1998) Feline immunodeficiency virus infection: an overview. Vet J 155:123–137

    Article  Google Scholar 

  • Hastings A (2004) Transients: the key to long-term ecological understanding? Trends Ecol Evol 19:39–45

    Article  Google Scholar 

  • Hilker FM, Schmitz K (2008) Disease-induced stabilization of predator–prey oscillations. J Theor Biol 255:299–306

    Article  Google Scholar 

  • Kooi BW, van Voorn GAK, pada Das K (2011) Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease. Ecol Complex 8:113–122

    Article  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lavers JL, Wilcox C, Donlan CJ (2010) Bird demographic responses to predator removal programs. Biol Invasions 12:3839–3859

    Article  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

  • Loyd KA, Miller CA (2010) Influence of demographics, experience and value orientation on preferences for lethal management of feral cats. Hum Dimens Wildl 15:262–273

    Article  Google Scholar 

  • Moors PJ, Atkinson IAE (1984) Predation on seabirds by introduced animals, and factors affecting its severity. In: Croxall PJ, Evans PGH, Schreiber RW (eds) Status and conservation of the world’s seabirds, vol 2. ICBP Technical Publications, Cambridge, pp 667–690

    Google Scholar 

  • Murray JD (1993) Mathematical biology, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Nogales M, Martin A, Tershey BR, Donlan CJ, Veitch D, Puerta N, Wood B, Alonso J (2004) A review of feral cat eradication on islands. Conserv Biol 18:310–319

    Article  Google Scholar 

  • Nutter FB, Levine JF, Stoskopf MK (2004) Reproductive capacity of free-roaming domestic cats and kitten survival rate. J Am Vet Med Assoc 225:1399–1402

    Article  Google Scholar 

  • Oliveira NM, Hilker FM (2010) Modeling disease introduction as biological control of invasive predators to preserve endangered prey. Bull Math Biol 72:444–468

    Article  MathSciNet  MATH  Google Scholar 

  • Pascal M (1980) Structure et dynamique la population de chats harets de l’archipel del kerguelen. Mammalia 44:161–182

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, London

    Book  Google Scholar 

  • Pontryagin Boltyanskii V, Gamkrelize R, Mishchenko E (1967) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  • Rauzon MJ (1985) Feral cats on Jarvis Island: their effects and their eradication. Atoll Res Bull 282:1–32

    Article  Google Scholar 

  • Rayner MJ, Hauber ME, Imber MJ, Stamp RK, Clout MN (2007) Spatial heterogeneity of mesopredator release within an oceanic island system. Proc Natl Acad Sci USA 104:20,862–20,865

    Article  Google Scholar 

  • Robertson SA (2008) A review of feral cat control. J Feline Med Surg 10:366–375

    Article  Google Scholar 

  • Rounsevel DE, Copson GR (1982) Growth rate and recovery of a king penguin aptenodytes patagonicus population after exploitation. Aust Wildl Res 9:519–525

    Article  Google Scholar 

  • Russell JC, Lecomte V, Dumont Y, Le Corre M (2009) Intraguild predation and mesopredator release effect on long-lived prey. Ecol Model 220:1098–1104

    Article  Google Scholar 

  • van Aarde RJ (1980) The diet and feeding behaviour of feral cats, Felis catus at Marion Island. S Afr J Wild Res 10(3/4):123–128

    Google Scholar 

  • van Rensburg PJJ, Bester MN (1988) The effect of cat, Felis catus, predation on three breeding Procellariidae species on Marion Island. S Afr J Zool 23(4):301–305

    Article  Google Scholar 

  • Xiao Y, Van Den Bosch F (2003) The dynamics of an eco-epidemic model with biological control. Ecol Model 168:203–214

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. Lenhart’s research was also partially supported by the University of Tennessee Boyd Center for Business and Economic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Numfor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Numfor, E., Hilker, F.M. & Lenhart, S. Optimal Culling and Biocontrol in a Predator–Prey Model. Bull Math Biol 79, 88–116 (2017). https://doi.org/10.1007/s11538-016-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0228-3

Keywords

Mathematics Subject Classification

Navigation