Skip to main content

Advertisement

Log in

Modelling Drug Abuse Epidemics in the Presence of Limited Rehabilitation Capacity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The abuse of drugs is now an epidemic globally whose control has been mainly through rehabilitation. The demand for drug abuse rehabilitation has not been matched with the available capacity resulting in limited placement of addicts into rehabilitation. In this paper, we model limited rehabilitation through the Hill function incorporated into a system of nonlinear ordinary differential equations. Not every member of the community is equally likely to embark on drug use, risk structure is included to help differentiate those more likely (high risk) to abuse drugs and those less likely (low risk) to abuse drugs. It is shown that the model has multiple equilibria, and using the centre manifold theory, the model exhibits the phenomenon of backward bifurcation whose implications to rehabilitation are discussed. Sensitivity analysis and numerical simulations are performed. The results show that saturation in rehabilitation will in the long run lead to the escalation of drug abuse. This means that limited access to rehabilitation has negative implications in the fight against drug abuse where rehabilitation is the main form of control. This suggests that increased access to rehabilitation is likely to lower the drug abuse epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alkhudhari Z, Al-Sheikh S, Al-Tuwairqi S (2014) Global dynamics of a mathematical model on smoking. Hindawi Publishing Corporation, ISRN Applied Mathematics. doi:10.1155/2014/847075

  • Benedict B (2007) Modeling alcoholism as a contagious disease: How infected drinking buddies spread problem drinking. SIAM News 40(3)

  • Bhunu CP, Garira W, Magombedze G (2009) Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment. Acta Biotheor 57:361

    Article  Google Scholar 

  • Bissell JJ, Caiado CCS, Goldstein M, Straughan B (2014) Compartmental modelling of social dynamics with generalised peer incidence. Math Models Methods Appl Sci 24:719–750

    Article  MathSciNet  MATH  Google Scholar 

  • Buonomo B, Lacitignola D (2011) On the backward bifurcation of a vaccination model with nonlinear incidence. Nonlinear Anal Model Control 16(1):30–46

    MathSciNet  MATH  Google Scholar 

  • Buonomo B, Lacitignola D (2014) Modeling peer influence effects on the spread of highrisk alcohol consumption behavior. Ricerche Mat 63:101–117

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberclosis and their applications. Math Biosci Eng 1(2):361–404

    Article  MathSciNet  MATH  Google Scholar 

  • Caulkins JP, Tragler G, Feichtinger G (1997) Controlling the US cocaine epidemic: prevention from light vs. rehabilitation of heavy use. Working Paper 214, Vienna University of Technology, Vienna, Austria

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296

    Article  MathSciNet  MATH  Google Scholar 

  • Cross Roads Recovery Centre. http://www.crossroadsrecovery.co.za

  • Csajka C, Verotta D (2006) Pharmacokinetic–pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 33:227279

    Article  Google Scholar 

  • Garba SM, Gumel AB, Abu Bakar MR (2008) Backward bifurcations in dengue transmission dynamics. Math Biosci 215:11–12

    Article  MathSciNet  MATH  Google Scholar 

  • Gifford S (2013) Family Involvement is Important in substance abuse rehabilitation. Psych Central. http://psychcentral.com/lib/family-involvement-is-important-in-substance-abuse-rehabilitation

  • Giuliano RA, Verpooten GA, Verbist L, Wedeen RP, De Broe ME (1986) In vivo uptake kinetics of aminoglycosides in the kidney cortex of rats. J Pharmacol Exp Ther 236:470475

    Google Scholar 

  • Haynes LW, Kay AR, Yau KW (1986) Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321:6670

    Article  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:4–7

    Google Scholar 

  • Hu Z, Ma W, Ruan S (2012) Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Math Biosci 238:12–20

    Article  MathSciNet  MATH  Google Scholar 

  • Jamison DT, Feachmen RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO (2006) Disease and mortality in sub-saharan Africa, 2nd edn. World Bank, Washington

    Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510518

    Article  Google Scholar 

  • Michaelis L, Menten ML (1913) Die kinetic der Invertinwirkung. Biochem Z 49:333369

    Google Scholar 

  • Mubayi A, Greenwood PE, Castillo-Chavez C, Gruenewald PJ, Gorman DM (2010) The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments. Socio Econ Plan Sci 44:4556

    Article  Google Scholar 

  • Mulone G, Straughan B (2012) Modelling binge drinking. Int J Biomath 5. Article ID 1250005

  • Mulone G, Straughan B (2009) A note on heroin epidemics. Math Biosci 208:138–141

    Article  MathSciNet  MATH  Google Scholar 

  • Mushanyu J, Nyabadza F, Muchatibaya G, Stewart AGR (2015a) Modelling multiple relapses in drug epidemics. Ricerche Mat. doi:10.1007/s11587-015-0241-0

  • Mushanyu J, Nyabadza F, Stewart AGR (2015b) Modelling the trends of inpatient and outpatient rehabilitation for methamphetamine in the Western Cape province of South Africa. BMC Res Notes 8:797. doi:10.1186/s13104-015-1741-4

    Article  Google Scholar 

  • Njagarah JBH, Nyabadza F (2013) Modelling the impact of rehabilitation, amelioration and relapse on the prevalence of drug epidemics. J Biol Syst 21. Article ID 1350001

  • Nyabadza F, Hove-Musekwa SD (2010) From heroin epidemics to methamphetamine epidemics: modelling substance abuse in a South African Province. Math Biosci 225:132–140

    Article  MathSciNet  MATH  Google Scholar 

  • Nyabadza F, Njagarah JBH, Smith RJ (2012) Modelling the dynamics of crystal meth (Tik) abuse in the presence of drug-supply chains in South Africa. Bull Math Biol. doi:10.1007/s11538-012-9790-5

  • Principles of drug addiction rehabilitation: a research-based guide. National Institute on Drug Abuse (NIDA) (2008)

  • Rougier F, Claude D, Maurin M (2003) Aminoglycoside nephrotoxicity: modeling, simulation, and control. Antimicrob Agents Chemother 47:10101016

    Article  Google Scholar 

  • Rydell CP, Caulkins JP, Everingham S (1996) Enforcement or rehabilitation? modeling the relative efficacy of alternatives for controlling cocaine. Oper Res 44:19

    Article  Google Scholar 

  • Sánchez F, Wang X, Castillo-Chavez C, Gorman DM, Gruenewald PJ (2007) Drinking as an epidemic: A simple mathematical model with recovery and relapse. in Therapists Guide to Evidence-Based Relapse Prevention, eds. G. Alan Marlatt, K. Witkiewitz (Academic Press, New York) 353

  • Schnermann J, Haberle DA, Davis JM, Thurau K (1992) Tubuloglomerular feedback control of renal vascular resistance. In: Windhager EE (ed) Handbook of renal physiology, Section 8: Renal physiology. Oxford University Press, Oxford

    Google Scholar 

  • Sharma S, Samanta GP (2015) Analysis of a drinking epidemic model. Int J Dyn Control. doi:10.1007/s40435-015-0151-8

  • Sharomi O, Gumel AB (2008) Curtailing smoking dynamics: a mathematical modeling approach. Appl Math Comput 195:475499

    MathSciNet  MATH  Google Scholar 

  • The South African community epidemiology network on drug use (SACENDU). http://www.mrc.ac.za/adarg/sacendu.htm

  • Walters CE, Straughan B, Kendal JR (2013) Modelling alcohol problems: total recovery. Ricerche Mat 62:33–53

    Article  MathSciNet  MATH  Google Scholar 

  • White E, Comiskey C (2007) Heroin epidemics, treatment and ODE modelling. Math Biosci 208:312–324

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Jia J, Song X (2014) Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function. Sci World J. http://dx.doi.org/10.1155/2014/910421

  • Zhang X, Liu XN (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348:433443

    MathSciNet  Google Scholar 

  • Zhou L, Fan M (2012) Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal Real World Appl 13:312–324

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann AL, Baylor DA (1986) Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321:7072

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and suggestions. J. Mushanyu, G. Muchatibaya and A. G. R. Stewart authors acknowledge, with thanks, the support of the Department of Mathematics, University of Zimbabwe. J. Mushanyu acknowledges financial support for his Doctor of Philosophy studies from the Deutscher Akademischer Austausch Dienst (DAAD) in-country scholarship. F. Nyabadza acknowledges with gratitude the support from National Research Foundation and Stellenbosch University for the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mushanyu.

Additional information

This work will be part of J. Mushanyu’s Doctor of Philosophy thesis.

Appendices

Appendix 1: Coefficients of Polynomial (19)

$$\begin{aligned} \xi _0= & {} \frac{K^2\mu (\mu +\varepsilon _1 +\varepsilon _2)}{(1-\varGamma _1)}\left[ \mu K(1-\varGamma _1)+\alpha q(1-\varGamma _2)\!+\!\alpha (1-q)(1\!-\!\varGamma _3)\right] \left( 1-{\mathcal {R}}_a\right) ,\\ \xi _1= & {} K (\alpha \beta _2 \eta \mu \varPsi _1+\alpha \beta _2 \mu \varPsi _1+\alpha \beta _2 \varPsi _1 \varepsilon _2+2 \alpha \mu ^2+2 \alpha \mu \varepsilon _2-2 \beta _2 \eta \varLambda \mu \varPsi _1 \\&-\,\beta _2^2 \eta \varLambda \varPsi _1^2, \\&-\,\beta _2 \eta \mu \rho _1 \varPsi _1^2-\beta _2 \mu \rho _1 \varPsi _1^2-\rho _2 \varPsi _2 (\beta _2 \varPsi _1 (\eta \mu +\mu +\varepsilon _2)+2 \mu (\mu +\varepsilon _2))\\&-\,2 \beta _2 \varLambda \varPsi _1 \varepsilon _2 \\&-\,\beta _2 \rho _1 \varPsi _1^2 \varepsilon _2-\beta _1^2 \eta K^2 \varLambda +\varepsilon _1 \,(\beta _2 \eta \varPsi _1 (\alpha +K \mu -2 \varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2) \\&+\,\mu (2 \alpha +3 K \mu -2 \rho _1 \varPsi _1-2 \rho _2 \varPsi _2))+\beta _2 \eta K \mu ^2 \varPsi _1+\beta _2 K \mu ^2 \varPsi _1\\&+\,\beta _2 K \mu \varPsi _1 \varepsilon _2+3 K \mu ^3 +\,\beta _1 K (-\varPsi _1 (2 \beta _2 \eta \varLambda +(\eta +1) \mu \rho _1)-(\eta +1) \mu \rho _2 \varPsi _2 \\&+\,\eta \varepsilon _1 (\alpha +K \mu -3 \varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2) \\&+\,\varepsilon _2 (\alpha +K \mu -3 \varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2)+\mu \\&\times \,(\alpha (\eta +1)-3 \eta \varLambda +(\eta +1) K \mu +3 (\eta -1) \varLambda p)) \\&+\,3 K \mu ^2 \varepsilon _2-2 \mu ^2 \rho _1 \varPsi _1+2 \beta _2 \eta \varLambda \mu p \varPsi _1-2 \beta _2 \varLambda \mu p \varPsi _1-2 \mu \rho _1 \varPsi _1 \varepsilon _2), \\ \end{aligned}$$
$$\begin{aligned} \xi _2= & {} \alpha \beta _2 \eta \mu \varPsi _1+\alpha \beta _2^2 \eta \varPsi _1^2+\alpha \beta _2 \mu \varPsi _1+\alpha \beta _2 \varPsi _1 \varepsilon _2+\alpha \mu \varepsilon _2-\beta _2 \eta \varLambda \mu \varPsi _1-\beta _2^2 \eta \varLambda \varPsi _1^2\\&-\,\beta _2 \eta \mu \rho _1 \varPsi _1^2 -\beta _2^2\eta \rho _1 \varPsi _1^3-\beta _2 \mu \rho _1 \varPsi _1^2-\rho _2 \varPsi _2 (\beta _2 \varPsi _1+\mu )(\beta _2 \eta \varPsi _1+\mu +\varepsilon _2)\\&-\beta _2 \varLambda \varPsi _1 \varepsilon _2-\beta _2 \rho _1 \varPsi _1^2 \varepsilon _2+\,\beta _1^2 \eta K^2 (\alpha +K \mu -3 \varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2) \\&+\varepsilon _1 (\mu (\alpha +3 K \mu -\rho _1 \varPsi _1-\rho _2 \varPsi _2)+\mu ^2 (\alpha +3 K \mu ) \\&-\,\beta _2 \eta \varPsi _1 (-\alpha -2 K \mu +\varLambda +\rho _1 \varPsi _1+\rho _2 \varPsi _2))+2 \beta _2 \eta K \mu ^2 \varPsi _1+\beta _2^2 \eta \\&\times \, K \mu \varPsi _1^2+2 \beta _2 K \mu ^2 \varPsi _1+\,2 \beta _2 K \mu \varPsi _1 \varepsilon _2+\beta _1 K (-2 \rho _2 \varPsi _2 (\beta _2 \eta \varPsi _1 \\&+\eta \mu +\mu )-2 \varPsi _1 ((\eta +1) \mu \rho _1-\beta _2 \eta (\alpha +K \mu -2 \varLambda -\rho _1 \varPsi _1)) \\&+\,\eta \varepsilon _1 (2 \alpha +3 K \mu -3 \varLambda -2 \rho _1 \varPsi _1-2 \rho _2 \varPsi _2)+\varepsilon _2 \\&\times \, (2 \alpha +3 K \mu -3 \varLambda -2 \rho _1 \varPsi _1-2 \rho _2 \varPsi _2)+\,\beta _2 \eta \varLambda \mu p \varPsi _1 \\&+\,\mu (2 \alpha (\eta +1)-3 \eta \varLambda +3 (\eta +1) K \mu +3 (\eta -1) \varLambda p))+3 K \mu ^2 \varepsilon _2\\&-\,\beta _2 \varLambda \mu p \varPsi _1-\mu \rho _1 \varPsi _1 \varepsilon _2-\mu ^2 \rho _1 \varPsi _1, \\ \xi _3= & {} \mu (\varepsilon _1 (\beta _2 \eta \varPsi _1+\mu )+(\beta _2 \varPsi _1+\mu )(\beta _2 \eta \varPsi _1+\mu +\varepsilon _2))+\beta _1^2 \eta K \\&\times \,(2 \alpha +3 K \mu -3 \varLambda -2 \rho _1 \varPsi _1-2 \rho _2 \varPsi _2) \\&+\,\beta _1 (-\rho _2 \varPsi _2 (2 \beta _2 \eta \varPsi _1+\eta \mu +\mu )-\varPsi _1 \\&\times \,((\eta +1) \mu \rho _1+2 \beta _2 \eta (-\alpha -2 K \mu +\varLambda +\rho _1 \varPsi _1)) \\&+\,\eta \varepsilon _1 (\alpha +3 K \mu -\varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2)+\varepsilon _2 \\&\times \,(\alpha +3 K \mu -\varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2) \\&+\,\mu (\alpha (\eta +1)-\eta \varLambda +3 (\eta +1) K \mu +(\eta -1) \varLambda p)), \\ \xi _4= & {} \beta _1 (\mu (2 \beta _2 \eta \varPsi _1+\eta \mu +\mu +\eta \varepsilon _1+\varepsilon _2)+\beta _1 \eta \\&\times \,(\alpha +3 K \mu -\varLambda -\rho _1 \varPsi _1-\rho _2 \varPsi _2)), \\ \xi _5= & {} \beta _1^2 \eta \mu . \end{aligned}$$

Appendix 2: Number of Positive Roots of Polynomial (19)

Table 2 Number of positive roots
Table 3 Number of positive roots
Table 4 Number of positive roots
Table 5 Number of positive roots

Appendix 3: Associated Nonzero Partial Derivatives of F at the Drug-Free Equilibrium

$$\begin{aligned} \frac{\partial ^2 f_1}{\partial x_1\partial x_3}= & {} \frac{\partial ^2 f_1}{\partial x_3\partial x_1}=\frac{\beta ^* _1 \mu \left( \mu (p-1)-\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \quad \\ \frac{\partial ^2 f_1}{\partial x_1\partial x_4}= & {} \frac{\partial ^2 f_1}{\partial x_4\partial x_1}=\frac{\beta ^* _1 \theta \mu \left( \mu (p-1)-\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\\ \frac{\partial ^2 f_1}{\partial x_2\partial x_3}= & {} \frac{\partial ^2 f_1}{\partial x_3\partial x_2}=\frac{\beta ^* _1 \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_1}{\partial x_2\partial x_4}= & {} \frac{\partial ^2 f_1}{\partial x_4\partial x_2}=\frac{\beta ^* _1 \theta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_1}{\partial x_3\partial x_3}= & {} \frac{2 \beta ^* _1 \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\\frac{\partial ^2 f_1}{\partial x_3\partial x_4}= & {} \frac{\partial ^2 f_1}{\partial x_4\partial x_3} =\frac{\beta ^* _1 (\theta +1) \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_1}{\partial x_3\partial x_5}= & {} \frac{\partial ^2 f_1}{\partial x_5\partial x_3}=\frac{\beta ^* _1 \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\\frac{\partial ^2 f_1}{\partial x_4\partial x_4}= & {} \frac{2 \beta ^* _1 \theta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_1}{\partial x_4\partial x_5}= & {} \frac{\partial ^2 f_1}{\partial x_5\partial x_4}=\frac{\beta ^* _1 \theta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_2}{\partial x_1\partial x_3}= & {} \frac{\partial ^2 f_2}{\partial x_3\partial x_1} =\frac{\beta ^* _1 \eta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_2}{\partial x_1\partial x_4}= & {} \frac{\partial ^2 f_2}{\partial x_4\partial x_1}=\frac{\beta ^* _1 \eta \theta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_2}{\partial x_2\partial x_3}= & {} \frac{\partial ^2 f_2}{\partial x_3\partial x_2}=-\frac{\beta ^* _1 \eta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\\ \frac{\partial ^2 f_2}{\partial x_2\partial x_4}= & {} \frac{\partial ^2 f_2}{\partial x_4\partial x_2}=-\frac{\beta ^* _1 \eta \theta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_2}{\partial x_3\partial x_3}= & {} \frac{2 \beta ^* _1 \eta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 f_2}{\partial x_3\partial x_4}= & {} \frac{\partial ^2 f_2}{\partial x_4\partial x_3}=-\frac{\beta ^* _1 \eta (\theta +1) \mu \left( \mu (p-1)-\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_2}{\partial x_3\partial x_5}= & {} \frac{\partial ^2 f_2}{\partial x_5\partial x_3} =\frac{\beta ^* _1 \eta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) } \\ \frac{\partial ^2 f_2}{\partial x_4\partial x_5}= & {} \frac{\partial ^2 f_2}{\partial x_5\partial x_4}=\frac{\beta ^* _1 \eta \theta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\\frac{\partial ^2 f_2}{\partial x_4\partial x_4}= & {} \frac{2 \beta ^* _1 \eta \theta \mu \left( \mu +\mu (-p)+\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_1\partial x_3}= & {} \frac{\partial ^2 f_3}{\partial x_3\partial x_1}=\frac{\beta ^* _1 (\eta -1) \mu \left( \mu (p-1)-\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_3}{\partial x_1\partial x_4}= & {} \frac{\partial ^2 f_3}{\partial x_4\partial x_1}=\frac{\beta ^* _1 (\eta -1) \theta \mu \left( \mu (p-1)-\varepsilon _1\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_2\partial x_3}= & {} \frac{\partial ^2 f_3}{\partial x_3\partial x_2} =\frac{\beta ^* _1 (\eta -1) \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) },\quad \\ \frac{\partial ^2 f_3}{\partial x_2\partial x_4}= & {} \frac{\partial ^2 f_3}{\partial x_4\partial x_2} =\frac{\beta ^* _1 (\eta -1) \theta \mu \left( \mu p+\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_3\partial x_3}= & {} \frac{2 \left( \alpha \varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) +\beta ^* _1 K^2 \mu \left( \mu (\eta (p-1)-p)-\eta \varepsilon _1-\varepsilon _2\right) \right) }{K^2 \varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_3\partial x_4}= & {} \frac{\partial ^2 f_3}{\partial x_4\partial x_3} =\frac{\beta ^* _1 (\theta +1) \mu \left( \mu (\eta (p-1)-p)-\eta \varepsilon _1-\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_3\partial x_5}= & {} \frac{\partial ^2 f_3}{\partial x_5\partial x_3}=\frac{\beta ^* _1 \mu \left( \mu (\eta (p-1)-p)-\eta \varepsilon _1-\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_4\partial x_4}= & {} \frac{2 \beta ^* _1 \theta \mu \left( \mu (\eta (p-1)-p)-\eta \varepsilon _1-\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_3}{\partial x_4\partial x_5}= & {} \frac{\partial ^2 f_3}{\partial x_5\partial x_4}=\frac{\beta ^* _1 \theta \mu \left( \mu (\eta (p-1)-p)-\eta \varepsilon _1-\varepsilon _2\right) }{\varLambda \left( \mu +\varepsilon _1+\varepsilon _2\right) }, \\ \frac{\partial ^2 f_4}{\partial x_3\partial x_3}= & {} -\frac{2 \alpha (1-q)}{K^2},\quad \frac{\partial ^2 f_5}{\partial x_3\partial x_3}=-\frac{2 \alpha q}{K^2}, \\ \frac{\partial ^2 f_1}{\partial x_3\partial \beta ^*_1}= & {} -\frac{\mu p+\varepsilon _2}{\mu +\varepsilon _1+\varepsilon _2},\quad \frac{\partial ^2 f_1}{\partial x_4\partial \beta ^*_1}=-\frac{\theta \left( \mu p+\varepsilon _2\right) }{\mu +\varepsilon _1+\varepsilon _2}, \\ \frac{\partial ^2 f_2}{\partial x_3\partial \beta ^*_1}= & {} \frac{\eta \left( \mu (p-1)-\varepsilon _1\right) }{\mu +\varepsilon _1+\varepsilon _2},\quad \frac{\partial ^2 f_2}{\partial x_4\partial \beta ^*_1}=\frac{\eta \theta \left( \mu (p-1)-\varepsilon _1\right) }{\mu +\varepsilon _1+\varepsilon _2}, \\ \frac{\partial ^2 f_3}{\partial x_3\partial \beta ^*_1}= & {} \frac{\mu (\eta -\eta p+p)+\eta \varepsilon _1+\varepsilon _2}{\mu +\varepsilon _1+\varepsilon _2},\quad \!\frac{\partial ^2 f_3}{\partial x_4\partial \beta ^*_1}\!=\!\frac{\theta \left( \mu (\eta -\eta p+p)+\eta \varepsilon _1+\varepsilon _2\right) }{\mu +\varepsilon _1+\varepsilon _2}. \end{aligned}$$

Appendix 4: Expressions for \(\Delta _1\) and \(\Delta _2\)

$$\begin{aligned} \Delta _1= & {} -K^2\theta \mu \beta ^*_1(1-\eta )(p\mu +\varepsilon _2)v_3u_2u_4-K^2\mu \beta ^*_1(1-\eta )(p\mu +\varepsilon _2)v_3u_2u_3\\&+\,2\alpha \varLambda (\mu +\varepsilon _1+\varepsilon _2)v_3u^2_3 \\ \Delta _2= & {} K^2\mu \beta ^*_1((p+(1-p)\eta )\mu +\eta \varepsilon _1+\varepsilon _2)((1+\theta )u_4+u_5)u_3v_3 \\&-\,\mu \beta ^*_1 K^2(1-\eta )((1-p)\mu +\varepsilon _1)v_3u_1u_3 \\&+\,K^2\theta \mu \beta ^*_1((p+(1-p)\eta )\mu +\eta \varepsilon _1+\varepsilon _2)(2u_4+u_5)u_4v_3\\&+\,2\alpha \varLambda (\mu +\varepsilon _1+\varepsilon _2)((1-q)v_4+qv_5)u^2_3 \\&+\,2\mu K^2\beta ^*_1((p+(1-p)\eta )\mu +\eta \varepsilon _1 \\&+\,\varepsilon _2)u^2_3v_3-\mu \theta \beta ^*_1 K^2(1-\eta )((1-p)\mu +\varepsilon _1)v_3u_1u_4. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushanyu, J., Nyabadza, F., Muchatibaya, G. et al. Modelling Drug Abuse Epidemics in the Presence of Limited Rehabilitation Capacity. Bull Math Biol 78, 2364–2389 (2016). https://doi.org/10.1007/s11538-016-0218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0218-5

Keywords

Navigation