Skip to main content
Log in

Regular Simple Queues of Protein Contact Maps

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with \(k_i\) peaks at level i, which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal PK, Mustafa NH, Wang Y (2007) Fast molecular shape matching using contact maps. J Comput Biol 14(2):131–143

    Article  MathSciNet  Google Scholar 

  • Anderson JE, Penner RC, Reidys CM, Waterman MS (2013) Topological classification and enumeration of RNA structures by genus. J Math Biol 67:1261–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Barcucci E, Pergola E, Pinzani R, Rinaldi S (2001) ECO method and hill-free generalized Motzkin paths. Sem Loth Comb 46:B46b

    MathSciNet  MATH  Google Scholar 

  • Chen WYC, Deng EYP, Du RRX (2005) Reduction of \(m\)-regular noncrossing partitions. Eur J Comb 26:237–243

    Article  MathSciNet  MATH  Google Scholar 

  • Chen WYC, Deng EYP, Du RRX, Stanley RP, Yan CH (2007) Crossings and nestings of matchings and partitions. Trans Am Math Soc 359:1555–1575

    Article  MathSciNet  MATH  Google Scholar 

  • Chen WYC, Guo Q-H, Sun LH, Wang J (2014) Zigzag stacks and \(m\)-regular linear stacks. J Comput Biol 21(12):915–935

    Article  MathSciNet  Google Scholar 

  • Chen WYC, Fan NJY, Zhao AFY (2012) Partitions and partial matchings avoiding neighbor patterns. Eur J Comb 33:491–504

    Article  MathSciNet  MATH  Google Scholar 

  • Domany E (2000) Protein folding in contact map space. Phys A 288:1–9

    Article  Google Scholar 

  • Donaghey R, Shapiro LW (1977) Motzkin numbers. J Comb Theory Ser A 23:291–301

    Article  MathSciNet  MATH  Google Scholar 

  • Dos̆lić T, Svrtan D, Veljan D (2004) Enumerative aspects of secondary structures. Discrete Math 285:67–82

    Article  MathSciNet  MATH  Google Scholar 

  • Duchi E, Fédou J-M, Rinaldi S (2004) From object grammars to ECO systems. Theor Comput Sci 314:57–95

    Article  MathSciNet  MATH  Google Scholar 

  • Dutour I (1996) Grammaires d’objets: énumération, bijections et génération aléatoire. PhD thesis, Université Bordeaux I, France

  • Flajolet P, Odlyzko AM (1990) Singularity analysis of generating functions. SIAM J Discrete Math 3(2):216–240

    Article  MathSciNet  MATH  Google Scholar 

  • Goldman D, Istrail S, Papadimitriou CH (1999) Algorithmic aspects of protein structure similarity. In: Proceedings of 40th IEEE symposium on foundations of computer science, pp 512–522

  • Höner zu Siederdissen C, Bernhart SH, Stadler PF, Hofacker IL (2011) A folding algorithm for extended RNA secondary structures. Bioinformatics 27(13):129–136

    Article  Google Scholar 

  • Istrail S, Lam F (2009) Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results. Commun Inf Syst 9(4):303–346

    MathSciNet  MATH  Google Scholar 

  • Jin EY, Qin J, Reidys CM (2008) Combinatorics of RNA structures with pseudoknots. Bull Math Biol 70:45–67

    Article  MathSciNet  MATH  Google Scholar 

  • Jin EY, Reidys CM (2008) Asymptotic enumeration of RNA structures with pseudoknots. Bull Math Biol 70:951–970

    Article  MathSciNet  MATH  Google Scholar 

  • Klazar M (1998) On trees and noncrossing partitions. Discrete Appl Math 82:263–269

    Article  MathSciNet  MATH  Google Scholar 

  • Lancia G, Carr R, Walenz B, Istrail S (2001) 101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem. In: Proceedings of the 5th annual international conference on computational biology, pp 193–202

  • Müller R, Nebel ME (2015) Combinatorics of RNA secondary structures with base triples. J Comput Biol 22(7):619–648

    Article  MathSciNet  Google Scholar 

  • Parkin N, Chamorro M, Varmus HE (1991) An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. J Proc Natl Acad Sci USA 89:713–717

    Google Scholar 

  • Schmitt WR, Waterman M (1994) Linear trees and RNA secondary structure. Discrete Appl Math 51:317–323

    Article  MathSciNet  MATH  Google Scholar 

  • Sloane NJA (1964) On-line encyclopedia of integer sequences. http://oeis.org/

  • Stanley RP (1999) Enumerative combinatorics, vol 2. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Vendruscolo M, Kussell E, Domany E (1997) Recovery of protein structure from contact maps. Fold Des 2(5):295–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 Project of the Ministry of Science and Technology, the 973 Project and the PCSIRT Project of the Ministry of Education, the National Science Foundation of China, and the Natural Science Foundation of Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, QH., Sun, L.H. & Wang, J. Regular Simple Queues of Protein Contact Maps. Bull Math Biol 79, 21–35 (2017). https://doi.org/10.1007/s11538-016-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0212-y

Keywords

AMS Classification

Navigation