Skip to main content

Advertisement

Log in

Effects of Glia in a Triphasic Continuum Model of Cortical Spreading Depression

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cortical spreading depression (SD) is a spreading disruption in brain ionic homeostasis during which neurons experience complete and prolonged depolarizations. SD is generally believed to be the physiological substrate of migraine aura and is associated with many other brain pathologies. Here, we perform simulations with a model of SD treating brain tissue as a triphasic continuum of neurons, glia and the extracellular space. A thermodynamically consistent incorporation of the major biophysical effects, including ionic electrodiffusion and osmotic water flow, allows for the computation of important physiological variables including the extracellular voltage (DC) shift. A systematic parameter study reveals that glia can act as both a disperser and buffer of potassium in SD propagation. Furthermore, we show that the timing of the DC shift with respect to extracellular \(\hbox {K}^{+}\) rise is highly dependent on glial parameters, a result with implications for the identification of the propagating mechanism of SD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida ACG, Texeira HZ, Duarte MA, Infantosi AFC (2004) Modeling extracellular space electrodiffusion during Leão’s spreading depression. IEEE T Biomed Eng 51(3):450–458

    Article  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22(3):1042

    Google Scholar 

  • Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 18(18):7189–7199

    Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2008) A quantitative model of cortical spreading depression due to purinergic and gap-junction transmission in astrocyte networks. Biophys J 95:5648–5660

    Article  Google Scholar 

  • Canals S, Marakova I, López-Aquado L, Largo C, Ibarz JM, Herreras O (2005) Longitudinal depolarization gradients along the somatodendritic axis of CA1 pyramidal cells: a novel feature of spreading depression. J Neurophysiol 94:943–951

    Article  Google Scholar 

  • Chang J, Brennan K, He D, Huang H, Miura R, Wilson P, Wylie J (2013) A mathematical model of the metabolic and perfusion effects on cortical spreading depression. PLoS One 8(8):e70469. doi:10.1371/journal.pone.0070469

    Article  Google Scholar 

  • Charles A, Brennan K (2009) Cortical spreading depression—new insights and persistent questions. Cephalalgia 29:1115–1124

    Article  Google Scholar 

  • Cholet N, Pellerin L, Magistretti P, Hamel E (2002) Similar perisynaptic glial localization for the Na+, K+-ATPase \(\alpha 2\) subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12(5):515–525

    Article  Google Scholar 

  • Dahlem M, Chronicle E (2004) A computational perspective on migraine aura. Prog Neurobiol 74(6):351–361

    Article  Google Scholar 

  • Dahlem MA, Hadjikhani N (2009) Migraine aura: retracting particle-like waves in weakly susceptible cortex. PLoS One 4(4):e5007

    Article  Google Scholar 

  • Dahlem M, Graf R, Strong A, Dreier J, Dahlem Y, Sieber M, Hanke W, Podoll K, Schöll E (2010) Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves. Phys D 239(11):889–903

    Article  MATH  Google Scholar 

  • De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump \(\alpha \)2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196

    Article  Google Scholar 

  • Dietz RM, Weiss JH, Shuttleworth CW (2008) Zn\(^{2+}\) influx is critical for some forms of spreading depression in brain slices influx is critical for some forms of spreading depression in brain slices. J Neurosci 28(32):8014–8024

    Article  Google Scholar 

  • Dreier J (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17(4):439–447

    Article  Google Scholar 

  • Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86(4):902–922

    Article  Google Scholar 

  • Dreier JP, Isele T, Reiffurth C, Offenhauser N, Kirov SA, Dahlem MA, Herreras O (2013) Is spreading depolarization characterized by an abrupt, massive release of gibbs free energy from the human brain cortex? Neuroscientist 19(1):25–42

    Article  Google Scholar 

  • Gorji A, Scheller D, Straub H, Tegtmeier F, Köhling R, Höhling JM, Tuxhorn I, Ebner A, Wolf P, Panneck HW, Oppel F, Speckmann EJ (2001) Spreading depression in human neocortical slices. Brain Res 906:74–83

    Article  Google Scholar 

  • Grafstein B (1956) Mechanism of spreading cortical depression. J Neurophysiol 19(2):154–171

    Google Scholar 

  • Hadjikhani N, del Rio MS, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98(8):4687–4692

    Article  Google Scholar 

  • Herreras O, Somjen GG (1993) Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable spreading depression induced by microdialysis of elevated \({\rm K}^+\) in hippocampus of anesthetized rats. Brain Res 610:283–294

    Article  Google Scholar 

  • Herreras O, Somjen G, Strong A (2005) Electrical prodromals of spreading depression void grafstein’s potassium hypothesis. J Neurophysiol 94(5):3656–3657

    Article  Google Scholar 

  • Hille B et al (2001) Ion channels of excitable membranes, vol 507. Sinauer Sunderland, Sunderland

    Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84:495–512

    Google Scholar 

  • Keener JP, Sneyd J (1998) Mathematical physiology. Springer, Berlin

    MATH  Google Scholar 

  • Largo C, Ibarz J, Herreras O (1997) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J Neurophysiol 78(1):295

    Google Scholar 

  • Lashley KS (1941) Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neuro Psychiatr 46(2):331

    Article  Google Scholar 

  • Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2010) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cerebr Blood Flow Met 31(1):17–35

    Article  Google Scholar 

  • Leao AA (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7(6):359–390

    Google Scholar 

  • Lehmenkühler A (1990) Spreading depression-reaktionen an der hirnrinde: Störungen des extrazellulären mikromilieus. EEG-EMG 21:1–6

    Google Scholar 

  • Lehmenkühler A, Aitken P (1993) Migraine: basic mechanisms and treatment. In: Proceedings of the international symposium migraine, basic mechanisms and treatment, held in Münster, Urban & Schwarzenberg. Mar 8–11 1992

  • Martins-Ferreira H, Ribeiro LJ (1995) Biphasic effects of gap-junctional uncoupling agents on the propagation of retinal spreading depression. Braz J Med Biol Res 28:991–994

    Google Scholar 

  • Miura R, Huang H, Wylie J (2007) Cortical spreading depression: an enigma. Eur Phys J Spec Top 147:287–302

    Article  Google Scholar 

  • Mori Y (2015) A multidomain model for ionic electrodiffusion and osmosis with an application to cortical spreading depression. Phys D 308:94–108

    Article  MathSciNet  Google Scholar 

  • Nedergaard M, Cooper AJL, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J Neurobiol 28(4):433–444

    Article  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (muller) cells. J Neurosci 13(8):3333–3345

    Google Scholar 

  • Nicholson C (1993) Volume transmission and the propagation of spreading depression. In: Proceedings of the international symposium migraine, basic mechanisms and treatment, Münster, Germany, 8–11 March 1992, pp 293–308

  • O’Connell RA (2016) A computational study of cortical spreading depression. PhD thesis. University of Minnesota,

  • Pietrobon D, Moskowitz MA (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15(6):379–393

    Article  Google Scholar 

  • Revett K, Ruppin E, Goodall S, Reggia J (1998) Spreading depression in focal ischemia: a computational study. J Cerebr Blood Flow Met 18(9):998–1007

    Article  Google Scholar 

  • Richter F, Lehmenkühler A (2008) Cortical spreading depression (csd): ein neurophysiologisches korrelat der migräneaura. Der Schmerz 22:544–550

    Article  Google Scholar 

  • Shapiro BE (2000) An electrophysiological model of gap-junction mediated cortical spreading depression including osmotic volume changes. PhD thesis. University of California, Los Angeles

  • Shapiro BE (2001) Osmotic forces and gap junctions in spreading depression: a computational model. J Comput Neurosci 10:99–120

    Article  Google Scholar 

  • Somjen GG (1973) Electrogenesis of sustained potentials. Prog Neurobiol 1:199–237

    Article  Google Scholar 

  • Somjen GG (2004) Ions in the brain. Oxford University Press, Oxford

    Google Scholar 

  • Steinberg B, Wang Y, Huang H, Miura R (2005) Spatial buffering mechanism: mathematical model and computer simulations. Math Biosci Eng 2:675–702

    Article  MathSciNet  MATH  Google Scholar 

  • Sugaya E, Takato M, Noda Y (1975) Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol 38:822–841

    Google Scholar 

  • Tamura K, Alessandri B, Heimann A, Kempski O (2011) The effect of a gap-junction blocker, carbenoxolone, on ischemic brain injury and cortical spreading depression. Neuroscience 194:262–271

    Article  Google Scholar 

  • Tfelt-Hansen PC (2010) History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia 30(7):780–792

  • Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Döring B, Frisch C, Söhl G, Teubner B, Euwens C, Huston J, Steinhäuser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23(3):766–776

    Google Scholar 

  • Tuckwell HC (1981) Simplified reaction-diffusion equations for potassium and calcium ion concentrations during spreading cortical depression. Int J Neurosci 12(2):95–107

    Article  Google Scholar 

  • Tuckwell HC, Miura RM (1978) A mathematical model of spreading cortical depression. Biophys J 23:257–276

    Article  Google Scholar 

  • Vanmolkot KR, Kors EE, Turk U, Turkdogan D, Keyser A, Broos LA, Kia SK, van den Heuvel JJ, Black DF, Haan J et al (2006) Two de novo mutations in the Na, K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur J Hum Gen 14(5):555–560

    Article  Google Scholar 

  • Yao W, Huang H, Miura RM (2011) A continuum neuronal model for the instigation and propagation of cortical spreading depression. Bull Math Biol 73:2773–2790

    Article  MathSciNet  MATH  Google Scholar 

  • Zandt BJ, ten Haken B, van Putten MJ, Dahlem MA (2015) How does spreading depression spread? physiology and modeling. Rev Neurosc 26(2):183–198

    Article  Google Scholar 

Download references

Acknowledgments

R. O. and Y. M. were supported by National Science Foundation Grant DMS 1516978. R. O. and Y. M. thank Jorge Riera Diaz and K. C. Brennan for valuable suggestions. Y. M. thanks the Fields Institute (Toronto, Canada) for support during the spreading depression workshop in the summer of 2014. Many participants have given Y. M. valuable advice and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichiro Mori.

Appendix: Ion Channels

Appendix: Ion Channels

For each ion species i, we write the outward flux as the sum of transporters and ion channels, with \(h_{i}^k\) representing the combined effect of the \(\hbox {Na}^{+}/\hbox {K}^{+}\) ATPase and any cotransporters, and m representing the different ion channels. Each channel is written as the product of the proportion of open channels \(\hat{g}_i^{k,m}\) and a flux–voltage–concentration relationship \(J_i^{k,m}\):

$$\begin{aligned} j_i^k = h_i^k + \sum _m \hat{g}_i^{k,m}J_i^{k,m}, \; k=\mathrm{n,g}. \end{aligned}$$

For the flux–voltage–concentration relationship in some ion channels, we use the Nernst potential for ion i and cell type k

$$\begin{aligned} E_i^k = \frac{RT}{z_i F} \ln \left( \frac{c_i^k}{c_i^\mathrm{e}}\right) . \end{aligned}$$

Persistent sodium current (neuron) Kager et al. (2000), Yao et al. (2011)

$$\begin{aligned} \hat{g}_{\mathrm{Na}}^{\mathrm{n,P}}&= m^2h\\ J_{\mathrm{Na}}^{\mathrm{n,P}}&= P_{\mathrm{Na}}^{\mathrm{n,P}}\frac{F\phi _\mathrm{ne}}{RT}\frac{c_{\mathrm{Na}}^\mathrm{n}\exp \left( \frac{F\phi _\mathrm{ne}}{RT}\right) -c_{\mathrm{Na}}^\mathrm{e}}{\exp \left( \frac{F \phi _\mathrm{ne}}{RT}\right) -1}\\ \frac{\hbox {d}m}{\hbox {d}t}&= \alpha _m(1-m)-\beta _mm\\ \frac{\hbox {d}h}{\hbox {d}t}&= \alpha _h(1-h)-\beta _hh\\ \alpha _m&= \frac{1}{\left( 1+\exp \left( {-}\left( 0.143\phi _\mathrm{ne} +5.67\right) \right) \right) 6}\\ \beta _m&= \frac{1}{\left( 1+\exp \left( 0.143\phi _\mathrm{ne} +5.67\right) \right) 6}\\ \alpha _h&= 5.12\times 10^{-6} \exp \left( {-}\left( 0.056\phi _\mathrm{ne} +2.94\right) \right) \\ \beta _h&= \frac{1.6\times 10^{-4}}{1+\exp \left( {-}\left( 0.2\phi _\mathrm{ne} +8\right) \right) } \end{aligned}$$

Potassium delayed rectifier current (neuron) Kager et al. (2000), Yao et al. (2011)

$$\begin{aligned} \hat{g}_\mathrm{K}^{\mathrm{n,DR}}&= m^2\\ J_\mathrm{K}^{\mathrm{n,DR}}&= P_\mathrm{K}^{\mathrm{n,DR}}\frac{F\phi _\mathrm{ne}}{RT}\frac{c_\mathrm{K}^\mathrm{n}\exp \left( \frac{F\phi _\mathrm{ne}}{RT}\right) -c_\mathrm{K}^\mathrm{e}}{\exp \left( \frac{F \phi _\mathrm{ne}}{RT}\right) -1}\\ \frac{\hbox {d}m}{\hbox {d}t}&= \alpha _m(1-m)-\beta _mm\\ \alpha _m&= \frac{0.016(\phi _\mathrm{ne}+34.9)}{1-\exp \left( {-}0.2\left( \phi _\mathrm{ne}+34.9\right) \right) }\\ \beta _m&= 0.25\exp \left( {-}(0.025\phi _\mathrm{ne}+1.25)\right) \end{aligned}$$

Transient potassium current (neuron) Kager et al. (2000), Yao et al. (2011)

$$\begin{aligned} \hat{g}_\mathrm{K}^{\mathrm{n,A}}&= m^2h\\ J_\mathrm{K}^{\mathrm{n,A}}&= P_\mathrm{K}^{\mathrm{n,A}}\frac{F\phi _\mathrm{ne}}{RT}\frac{c_\mathrm{K}^\mathrm{n}\exp \left( \frac{F\phi _\mathrm{ne}}{RT}\right) -c_\mathrm{K}^\mathrm{e}}{\exp \left( \frac{F \phi _\mathrm{ne}}{RT}\right) -1}\\ \frac{\hbox {d}m}{\hbox {d}t}&= \alpha _m(1-m)-\beta _mm\\ \frac{\hbox {d}h}{\hbox {d}t}&= \alpha _h(1-h)-\beta _hh\\ \alpha _m&= \frac{0.02(\phi _\mathrm{ne}+56.9)}{1-\exp \left( {-}0.1(\phi _\mathrm{ne}+56.9)\right) }\\ \beta _m&= \frac{0.0175(\phi _\mathrm{ne}+29.9)}{\exp \left( 0.1(\phi _\mathrm{ne}+29.9)-1\right) }\\ \alpha _h&= 0.016\exp \left( {-}(0.056\phi _\mathrm{ne}+4.61)\right) \\ \beta _h&= \frac{0.5}{\exp \left( {-}(0.2\phi _\mathrm{ne}+11.98)\right) +1} \end{aligned}$$

Potassium inward rectifier current (glia) Newman (1993), Steinberg et al. (2005)

$$\begin{aligned} \hat{g}_\mathrm{K}^{\mathrm{n,IR}}&= P_\mathrm{K}^{\mathrm{g,IR}}\sqrt{\frac{c_\mathrm{K}^\mathrm{e}}{3}}\frac{1+\exp \left( 18.5/42.5\right) }{1+\exp \left( (\phi _\mathrm{ge}-E_\mathrm{K}^\mathrm{g}+18.5)/42.5\right) }\\&\qquad \times \,\frac{1+\exp \left( ({-}118.6-85.2)/44.1\right) }{1+\exp \left( ({-}118.6+\phi _\mathrm{ge})/44.1\right) }\\ J_\mathrm{K}^{\mathrm{n,IR}}&= F\left( \phi _{\mathrm{ge}} - E_\mathrm{K}^g\right) \end{aligned}$$

Leak currents (neuron, glia) Kager et al. (2000), Yao et al. (2011)

$$\begin{aligned} \hat{g}_{i}^{k,\mathrm{L}}&= 1\\ J_{i}^{k,\mathrm{L}}&= P_{i}^{k,\mathrm{L}}z_iF\left( \phi _{k\mathrm{e}} - E_i^k\right) \end{aligned}$$

\(\hbox {Na}^{+}{/}\hbox {K}^{+}\) ATPase current (neuron, glia) Yao et al. (2011)

$$\begin{aligned} I_k^\mathrm{ATP}&= \frac{\bar{I}_k}{\left( 1+m_\mathrm{K}/c_\mathrm{K}^\mathrm{e}\right) ^2\left( 1+m_{\mathrm{Na}}/c_{\mathrm{Na}}^{k}\right) ^3}\\ h_{\mathrm{Na}}^{k,\mathrm{ATP}}&= 3I_k^\mathrm{ATP}\\ h_\mathrm{K}^{k,\mathrm{ATP}}&= -2I_k^\mathrm{ATP} \end{aligned}$$

Sodium, potassium, chloride cotransporter current (glia) Bennett et al. (2008)

$$\begin{aligned} I_k^{\mathrm{NaKCl}}&= P^{\mathrm{NaKCl}}\ln \left( \frac{c_{\mathrm{Na}}^\mathrm{g}c_\mathrm{K}^\mathrm{g}\left( c_{\mathrm{Cl}}^\mathrm{g}\right) ^2}{c_{\mathrm{Na}}^\mathrm{e}c_\mathrm{K}^\mathrm{e}\left( c_{\mathrm{Cl}}^\mathrm{e}\right) ^2}\right) \\ h_{\mathrm{Na}}^{k,\mathrm{NaKCl}}&= I_k^{\mathrm{NaKCl}}\\ h_\mathrm{K}^{k,\mathrm{NaKCl}}&= I_k^{\mathrm{NaKCl}}\\ h_{\mathrm{Cl}}^{k,\mathrm{NaKCl}}&= 2I_k^{\mathrm{NaKCl}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell, R., Mori, Y. Effects of Glia in a Triphasic Continuum Model of Cortical Spreading Depression. Bull Math Biol 78, 1943–1967 (2016). https://doi.org/10.1007/s11538-016-0206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0206-9

Keywords

Mathematics Subject Classification

Navigation