Skip to main content
Log in

Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study an integro-difference equation model that describes the spatial dynamics of a species in an expanding or contracting habitat. We give conditions under which the species disperses to a region of poor quality where the species eventually becomes extinct. We show that when the species persists in the habitat, the rightward and leftward spreading speeds are determined by c, the speed at which the habitat quality increases or decreases in time, as well as \(c^*(\infty )\), \(c^*_-(\infty )\), \(c^*(-\infty )\), and \(c^*_-(-\infty )\), which are formulated in terms of the dispersal kernel and species growth rates in both directions. We demonstrate that in the case that the species grows everywhere in space, the rightward spreading speed is \(c^*(\infty )\) if c is relatively small and is \(c^*(-\infty )\) if c is large, and the leftward spreading speed is one of \(-c\), \(c^*(-\infty )\), or \(c^*_-(-\infty )\). We also show that it is possible for a solution to form a two-layer wave, with the propagation speeds of the two layers analytically determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banks HT, Kareiva PM, Zia L (1988) Analyzing field studies of insect dispersal using two-dimensional transport equations. Environ Entomol 17:815–820

    Article  Google Scholar 

  • Berestycki H, Diekmann O, Nagelkerke CJ, Zegeling PA (2009) Can a species keep pace with a shifting climate? Bull Math Biol 71:399–429

    Article  MathSciNet  MATH  Google Scholar 

  • Britton JR, Cucherousset J, Davies GD, Godard MJ, Copp GH (2010) Non-native fishes and climate change: predicting species responses to warming temperatures in temperate regions. Freshw Biol 55:1130–1141

    Article  Google Scholar 

  • Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 10:1210–1220

    Article  Google Scholar 

  • Downey PO, Smith JMB (2000) Demography of the invasive shrub scotch broom (Cytisus scoparius) at Barrington Tops, New South Wales: insights for management. Austral Ecol 25:477–485

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  Google Scholar 

  • Evans AM, Gregoire TG (2007) A geographically variable model of hemlock woolly adelgid spread. Biol Invasions 9:369–382

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369

    Article  MATH  Google Scholar 

  • Fowler SV, Harman HM, Memmott J, Paynter Q, Shaw R, Sheppard AW, Syrett P, Fowler SV (1996) Comparing the population dynamics of broom, Cytisus scoparius, as a native plant in the United Kingdom and France and as an invasive alien weed in Australia and New Zealand. In: Proceedings of the IX international symposium on biological control of weeds. University of Cape Town, Stellenbosch, South Africa

  • Gallagher RV, Duursma DE, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013a) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975

    Article  Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2013b) Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36:531–540

    Article  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Change Biol 14:513–528

    Article  Google Scholar 

  • Helland IS, Hoff JM, Anderbrant O (1984) Attraction of bark beetles (Coleoptera: Scolytidae) to a pheromone trap: experiment and mathematical models. J Chem Ecol 10:723–752

    Article  Google Scholar 

  • Hobbs RJ (ed) (2000) Invasive species in a changing world. Island Press, London

    Google Scholar 

  • Hodar JA, Castro J, Zamora R (2003) Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol Conserv 110:123–129

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  Google Scholar 

  • Holmes EE (1993) Are diffusion models too simple? A comparison with telegraph models of invasion. Am Nat 142:779–795

    Article  Google Scholar 

  • Howe HE, Westley LC (1986) Ecology of pollination and seed dispersal. In: Crawley MJ (ed) Plant ecology. Blackwell Scientific, Oxford, pp 185–216

    Google Scholar 

  • Keleher CJ, Rahel FJ (1996) Thermal limits to salmonid distributions in the Rocky Mountain region and potential habitat loss due to global warming: a geographic information system (GIS) approach. Trans Am Fish Soc 125:1–13

    Article  Google Scholar 

  • Keller RP, Drake JM, Drew MB, Lodge DM (2011) Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers Distrib 17:93–102

    Article  Google Scholar 

  • Kolmogorov A, Petrovskii I, Piscounov N (1937) Étude de l’équation de la diffusion avec croissance de la quantité de matiére et son application a un probléme biologique. Moscou Univ Math Bull 1:126

    Google Scholar 

  • Kot M, Lewis MA, van der Driessche P (1996) Dispersal data and the spread of invading species. Ecology 77:2027–2042

    Article  Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43:141–158

    Article  MATH  Google Scholar 

  • Li B, Lewis MA, Weinberger HF (2009) Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol 58:323–338

    Article  MathSciNet  MATH  Google Scholar 

  • Li B, Fagan WF, Meyer KI (2014a) Success, failure, and spreading speeds for invasions on spatial gradients. J Math Biol. doi:10.1007/s00285-014-0766-y

    MathSciNet  MATH  Google Scholar 

  • Li B, Bewick S, Shang J, Fagan WF (2014b) Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math 74:1397–1417. Li B, Bewick S, Shang J, Fagan WF (2015) Erratum to: Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math 75:2379–2380

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    Article  Google Scholar 

  • Locey KJ, Stone PA (2006) Factors affecting range expansion in the introduced Mediterranean gecko, Hemidactylus turcicus. J Herpetol 40:526–530

    Article  Google Scholar 

  • Logan JA (2006) Climate change induced invasions by native and exotic pests. In: Proceedings of the 17th US Department of Agriculture interagency research forum on gypsy moth and other invasive species

  • Lozier JD, Mills NJ (2011) Predicting the potential invasive range of light brown apple moth (Epiphyas postvittana) using biologically informed and correlative species distribution models. Biol Invasions 13:2409–2421

    Article  Google Scholar 

  • Lutscher F (2007) Density-dependent dispersal in integrodifference equations. J Math Biol 56:499–524

    Article  MathSciNet  MATH  Google Scholar 

  • Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012) Environmental change and the shifting balance among penguins on the Antarctic Peninsula. Ecology 93:1367–1377

    Article  Google Scholar 

  • Mayewski PA, Meredith MP, Summerhayes CP, Turner J, Worby A, Barrett PJ, Casassa G, Bertler NAN, Bracegirdle T, Naveira Garabato AC, Bromwich D, Campbell H, Hamilton GS, Lyons WB, Maasch KA, Aoki S, Xiao C, van Ommen Tas (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47(1):RG1003. doi:10.1029/2007RG000231

  • Meshaka WE Jr, Marshall SD, Boundy J, Williams AA (2006) Status and geographic expansion of the Mediterranean Gecko, Hemidactylus turcicus, in Louisiana: implications for the southeastern United States. Herpetol Conserv Biol 1:45–50

    Google Scholar 

  • Neubert MG, Caswell H (2000) Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81:1613–1628

    Article  Google Scholar 

  • Neubert MG, Parker IM (2004) Projecting rates of spread for invasive species. Risk Anal 24:817–831

    Article  Google Scholar 

  • Ni J (2000) A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mt Res Dev 20:80–89

    Article  Google Scholar 

  • Okubo A, Maini PK, Williamson MH, Murray JD (1989) On the spatial spread of the grey squirrel in Britain. Proc R Soc Lond B Biol Sci 238:113–125

    Article  Google Scholar 

  • Paradis A, Elkinton J, Hayhoe K, Buonaccorsi J (2008) Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitig Adapt Strateg Glob Change 13:541–554

    Article  Google Scholar 

  • Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distributions of invasive Eurasion annual grasses: a South African perspective. Clim Change 94:87–103

    Article  Google Scholar 

  • Parr CL, Gray EF, Bond WJ (2012) Cascading biodiversity and functional consequences of a global change-induced biome switch. Divers Distrib 18:493–503

    Article  Google Scholar 

  • Perkins TA, Phillips BL, Baskett ML, Hastings A (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16:1079–1087

    Article  Google Scholar 

  • Polovina JJ, Dunne JP, Woodworth PA, Howell EA (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci 68:986–995

    Article  Google Scholar 

  • Potapov AB, Lewis MA (2004) Climate and competition: the effect of moving range boundaries on habitat invisibility. Bull Math Biol 66:975–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Potter KJB, Kriticos DJ, Leriche A (2008) Climate change impacts on Scotch broom in Australia. In: Proceedings of the 16th Australian weeds conference, Cairns Convention Centre, North Queensland, Australia, 18–22 May, Queensland Weed Society

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  Google Scholar 

  • Sackett TE, Record S, Bewick S, Baiser B, Sanders NJ, Ellison AM (2011) Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species. Ecosphere 2:art74

  • Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments. Theor Popul Biol 30:143–160

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500

    Article  Google Scholar 

  • Suckling DM, Stringer LD, Baird DB, Butler RC, Sullivan TES, Lance DR, Simmons GS (2014) Light brown apple moth (Epiphyas postvittana) (Lepidoptera: Tortricidae) colonization of California. Biol Invasions 16:1851–1863

    Article  Google Scholar 

  • Trotter RT, Shields KS (2009) Variation in winter survival of the invasive hemlock woolly adelgid (Hemiptera: Adelgidae) across the eastern United States. Environ Entomol 38:577–587

    Article  Google Scholar 

  • Volkov D, Lui R (2007) Spreading speed and traveling wave solutions of a partially sedentary population. IMA J Appl Math 72:801–816

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13:353–396

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Long-time behavior of a class of biological models. J Math Biol 45:511–548

    Article  MathSciNet  MATH  Google Scholar 

  • Wolkovich EM, Lipson DA, Virginia RA, Cottingham KL, Bolger DT (2010) Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob Change Biol 16:1351–1365

    Article  Google Scholar 

  • Zhou Y, Kot M (2011) Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol 4:13–25

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees for their constructive comments which have considerably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtuan Li.

Additional information

Bingtuan Li: This research was partially supported by the National Science Foundation under Grant DMS-1225693 and Grant DMS-1515875.

Sharon Bewick and William F. Fagan: This research was partially supported by the National Science Foundation under Grant DMS-1225917.

Appendix

Appendix

In this section, we provide the proofs for the theorems given in Sect. 3. We observe that if \(u_n(x)\) is a solution of (1) then \(\hat{u}_n(x)=u_n(x+nc)\) satisfies

$$\begin{aligned} \hat{u}_{n+1}(x)=\int _{-\infty }^{\infty }k(x+c-y)g(y, \hat{u}_n(y))\hbox {d}y. \end{aligned}$$
(6)

This equation can be written as

$$\begin{aligned} \hat{u}_{n+1}(x)=\hat{Q}[\hat{u}_n](x) \end{aligned}$$

with \(\hat{Q}\) the operator determined by the right-hand side of (6). The model

$$\begin{aligned} {u}_{n+1}(x)=\int _{-\infty }^{\infty }k(x-y)g(y, {u}_n(y))\hbox {d}y \end{aligned}$$
(7)

was studied in Li et al. (2014a). We extend the results provided for (7) in Li et al. (2014a) to study (6) and (1). We particularly use Lemma 3.3 and Lemma 3.4 in Li et al. (2014a) to construct useful upper and lower solutions for (1).

1.1 Upper and Lower Solutions

1.1.1 An Upper Solution

We introduce the following lemma regarding an upper solution for (1).

Lemma 2

Assume that Hypotheses 1 are satisfied. Let \(\bar{u}_n(x)\) be the solution of \(\bar{u}_{n+1}(x)=\hat{Q}[\bar{u}_n](x)\) with \(\bar{u}_0(x)\equiv \beta (\infty )\).

  1. (i)

    Each \(\bar{u}_n(x)\) is continuous and nondecreasing in x, \(0 \le \bar{u}_{n+1}(x) \le \bar{u}_{n}(x)\le \beta (\infty )\) for \(n \ge 0\) and all \(x\in {\mathbb {R}}\), and the sequence \(\bar{u}_{n}(x)\) converges point-wise to a nondecreasing function \(\bar{u}(x)\) with \(\bar{u}(-\infty )=\beta (-\infty )\).

  2. (ii)

    If \(u_n(x)\) is a solution of (1) with \(u_0(x)\le \beta (\infty )\), then \(u_n(x)\le \bar{u}_n(x-nc)\).

Proof

\(\bar{u}_0(x)\equiv \beta (\infty )\) is continuous in x. If \(\bar{u}_n(x)\) is continuous, then continuity of \(\bar{u}_{n+1}(x)\) in x directly follows from that \(\bar{u}_{n+1}(x)\) is given by an integral with the integrand discontinuous at most at a finite number of numbers. Induction shows that \(\bar{u}_n(x)\) is continuous in x for all n.

Since \(\bar{{u}}_0(x)\equiv {\beta }(\infty )\) and \({g}(x, {u})\) is nonnegative and nondecreasing in x and u, \(\bar{{u}}_1(x)=\int _{-\infty }^{\infty }{k}(y+c){g}(x-y, \bar{{u}}_0(x-y))\hbox {d}y\) is nondecreasing in x. Induction shows that \(u_n(x)\) is nondecreasing in x. On the other hand, since \({\beta }(-\infty ) \le \bar{{u}}_0(x)\equiv {\beta }(\infty )\), \({\beta }(-\infty ) \le \bar{{u}}_1(x)=\int _{-\infty }^{\infty }{k}(y+c){g}(x-y, \bar{{u}}_0(x-y))\hbox {d}y\le \bar{{u}}_0 (x)\). Induction and monotonicity of \({g}(x, {u})\) in u show that \( {\beta }(-\infty ) \le \bar{{u}}_{n+1}(x) \le \bar{{u}}_n(x)\le {\beta }(\infty )\). It follows that \(\bar{{u}}_n(x)\) converges point-wise to a nondecreasing function \(\bar{{u}}(x)\) with \(\bar{{u}}(x)\) nondecreasing in x and \({\beta }(-\infty ) \le \bar{{u}}(x)\le {\beta }(\infty )\) for all x.

By taking the limit \(n\rightarrow \infty \) in \(\bar{u}_{n+1}(x)=\hat{Q}[\bar{u}_n](x)\) and using the dominated convergence theorem, we have

$$\begin{aligned} \bar{{u}}(x)=\int _{-\infty }^{\infty }{k}(y+c ){g}(x-y, \bar{{u}}(x-y))\hbox {d}y. \end{aligned}$$

We then take the limit \(x\rightarrow -\infty \) and use the dominated convergence theorem to obtain

$$\begin{aligned} {\beta }(-\infty )\le \bar{{u}}(-\infty )= & {} \int _{-\infty }^{\infty }{k}(y+c){g}(-\infty , \bar{{u}} (-\infty ))\hbox {d}y \\= & {} g(-\infty , \bar{{u}}(-\infty ))\\\le & {} \min \{\beta (\infty ), \frac{\partial {g(-\infty , 0)}}{\partial u}\bar{{u}}(-\infty )\}. \end{aligned}$$

If \(\frac{\partial {g(-\infty , 0)}}{\partial u}<1\), we have \(\bar{{u}}(-\infty )=\beta (-\infty )=0\). If \(\frac{\partial {g(-\infty , 0)}}{\partial u}>1\), Hypothesis 2 implies \(\bar{{u}}(-\infty )=\beta (-\infty )>0\). This proves the statement (i).

Since \(\hat{u}_n(x)=u(x+nc)\) satisfies (6) and \(\hat{u}_0(x)\le \bar{u}_0(x)\), Lemma 1 implies that \(\hat{u}_n(x) \le \bar{u}_n(x)\), which indicates \( u_n(x)\le \bar{u}_n(x-nc). \) This proves the statement (ii). \(\square \)

Lemma 2 shows that \(\bar{u}_n(x-nc)\) is an upper solution of (1), and \(\bar{u}_n(x)\) converges to a nondecreasing function with the limit \(\beta (-\infty )\) at \(-\infty \). It is useful in determining nonpersistence and the asymptotic behavior of solutions near \(-\infty \) under appropriate conditions.

1.1.2 Lower Solutions

We now construct lower solutions for (1) by extending the work in Li et al. (2014a). We first need the following lemma.

Lemma 3

Assume that Hypotheses 1 are satisfied. The following statements hold:

  1. (a)

    Let \(c^*(\infty )>c\). If \(u_0(x) > 0\) on a closed interval \([x_1, x_2]\) where \(g(x, u) > 0\) for \(u > 0\), then there exist \(a_2> a_1 > 0\) such that for all positive n, \(u_n(x+nc) > 0\) for \(x\in [x_1 + na_1, x_2 + na_2]\).

  2. (b)

    Let \(\frac{\partial g(-\infty , 0)}{\partial u}>1\). If \(u_0(x) > 0\) on a closed interval \([x_1, x_2]\), then there exist real numbers \(a_2 > a_1\) such that for all positive n, \(u_n(x+nc) > 0\) for \(x \in [x_1 +na_1, x_2 + na_2]\).

Proof

Consider \(\hat{u}_n(x)=u(x+nc)\) that satisfies (6). The condition \(c^*(\infty )>0\) with \(c^*(\infty )\) defined by (3.1) in Li et al. (2014a) is equivalent to \(c^*(\infty )-c>0\) with \(c^*(\infty )\) given by (3) in the current paper. Lemma 3.4 (a) in Li et al. (2014a) implies that there exists \(a_2>a_1>0\) such that \(\hat{u}_n(x)=u_n(x+nc)>0\) for \(x\in [x_1+na_1, x_2+na_2]\). This proves the statement (a).

In the case of \(\frac{\partial g(-\infty , 0)}{\partial u}>1\), \(g(x, u)>0\) for any real x and \(u>0\). Since k(x) is continuous and \(\int _{-\infty }^{\infty }k(x)\hbox {d}x =1\), there exit real numbers \({a}_2>{a}_1\) such that \(k(x+c)>0\) for \(x\in [ {a}_1, {a}_2]\). The last part of the proof of Lemma 3. 4 (a) in Li et al. (2014a) shows that \(\hat{u}_n(x)=u_n(x+nc)>0\) for \(x\in [x_1+na_1, x_2+na_2]\). The proof is complete.

This lemma shows that the solution of (1) becomes positive in a moving interval whose length increases to \(\infty \) as n approaches \(\infty \). It is essential to build useful lower solutions for (1).

To construct lower solutions for (1), we recall the functions \(v ({\mu };x)\) and \(z({\mu }; \gamma )\) used in Li et al. (2014a). The function \(v ({\mu };x)\) is given by

$$\begin{aligned} v ({\mu };x)= \left\{ \begin{array}{ll} \alpha e^{-\mu x}\sin \gamma x, &{}\quad {\mathrm{if }}\; 0\le x\le \pi /\gamma ,\\ 0, &{}\quad \mathrm{elsewhere}, \end{array} \right. \end{aligned}$$

where \(\alpha \), \(\mu \), and \(\gamma \) are positive numbers. (This function is called v(s) in Weinberger (1982).) The maximum of \(v (\mu ; x)\) occurs at

$$\begin{aligned} \sigma (\mu )=(1/\gamma )\tan ^{-1}(\gamma /\mu ). \end{aligned}$$
(8)

\(\sigma (\mu )\) is a positive and strictly decreasing function of \(\mu \). Clearly \(\sigma (\mu ) <\pi /\gamma \).

The function \(z({\mu }; \gamma )\) is given by

$$\begin{aligned} z({\mu }; \gamma )=\frac{1}{\gamma }\tan ^{-1}\frac{ \int _{-\infty }^{\infty }k(y)e^{\mu y}\sin \gamma y \hbox {d}y}{ \int _{-\infty }^{\infty }k(y)e^{\mu y}\cos \gamma y\hbox {d}y}. \end{aligned}$$

We also need

$$\begin{aligned} v_{-}(\mu ; x)=v(\mu ; -x), \end{aligned}$$

and

$$\begin{aligned} z_-({\mu }; \gamma )=-\frac{1}{\gamma }\tan ^{-1}\frac{ \int _{-\infty }^{\infty }k(y)e^{-\mu y}\sin \gamma y \hbox {d}y}{ \int _{-\infty }^{\infty }k(y)e^{-\mu y}\cos \gamma y\hbox {d}y}. \end{aligned}$$

The work in Weinberger (1982) shows that

$$\begin{aligned} \lim _{\gamma \rightarrow 0}z({\mu }; \gamma )=\psi (\mu ), \ \ \lim _{\gamma \rightarrow 0}z_-({\mu }; \gamma )=\psi _-(\mu ). \end{aligned}$$
(9)

Let \(\epsilon \) be a small positive number and L be a number with \(L>\frac{4\pi }{\gamma }\). Let \(\mu _1\) and \(\mu _2\) be positive numbers.

The following function was used in Li et al. (2014a).

$$\begin{aligned}&u^{(n)}_{r}(\epsilon , \mu _1, \mu _2; x)\\&\quad = \left\{ \begin{array}{l@{\quad }l} v({\mu _1}; x-nz(\mu _1; \gamma )), &{} {\mathrm{if }}\; nz(\mu _1; \gamma )\le x\le \sigma (\mu _1) +nz(\mu _1; \gamma ), \\ \epsilon , &{} {\mathrm{if }}\; \sigma (\mu _1)+nz (\mu _1; \gamma ) \le x \le \sigma (\mu _2)+L \\ &{}\quad -\frac{\pi }{\gamma } +nz (\mu _2; \gamma ), \\ dv({\mu _2}; x-L+ \frac{\pi }{\gamma }-nz(\mu _2; \gamma )), &{} {\mathrm{if}}\; \sigma (\mu _2)+L-\frac{\pi }{\gamma }+nz(\mu _2; \gamma ) \le x \le L \\ &{}\quad +nz(\mu _2; \gamma ), \\ 0, &{} \mathrm{elsewhere,} \end{array} \right. \end{aligned}$$

where \(\sigma (\mu )\) is given by (8), \(\alpha \) and d satisfy \(v({\mu _1};\sigma (\mu _1))=dv({\mu _2};\sigma (\mu _2))=\epsilon \), and \(z(\mu _2; \gamma )>z(\mu _1; \gamma )\). (A translation of this function is given by (6.16) in Li et al. (2014a).) The proof of Theorem 1 in Li et al. (2014a) shows that for k(x) with compact support, small positive \(\alpha \), \(\epsilon \) and \(\gamma \), large L, and appropriate \(\mu _1\) and \(\mu _2\), a proper translation of \(u^{(n)}_{r}(\epsilon , \mu _1, \mu _2; x)\) is a lower solution of (1) for \(c=0\). \(u^{(n)}_{r}(\epsilon , \mu _1, \mu _2; x)\) is \(\epsilon \) for x in the interval \([\sigma (\mu _1) +nz(\mu _1; \gamma ), \sigma (\mu _2)+L-\pi /\gamma +nz(\mu _2; \gamma )]\) with the end points shifting rightward at speeds \(z(\mu _1; \gamma )\) and \(z(\mu _2; \gamma )\), respectively, as n increases.

We introduce two additional functions:

$$\begin{aligned}&u^{(n)}(\epsilon , \mu _1, \mu _2; x)\nonumber \\&\quad = \left\{ \begin{array}{l@{\quad }l} v_-({\mu _1}; x+nz_-(\mu _1; \gamma )), &{} {\mathrm{if}}\; -nz_-(\mu _1; \gamma )-\frac{\pi }{\gamma }\le x\le -nz_-(\mu _1; \gamma ) \\ &{}\quad -\sigma (\mu _1),\\ \\ \epsilon , &{} {\mathrm{if}}\; -nz_- (\mu _1; \gamma ) - \sigma (\mu _1) \le x \le \sigma (\mu _2)+L \\ &{}\quad -\frac{\pi }{\gamma } +nz (\mu _2; \gamma ), \\ dv({\mu _2}; x-L+ \frac{\pi }{\gamma }-nz(\mu _2; \gamma )), &{} {\mathrm{if}} \sigma (\mu _2)+L-\frac{\pi }{\gamma }+nz(\mu _2; \gamma ) \le x \le L \\ &{}\quad +\,nz(\mu _2; \gamma ), \\ 0, &{} { \mathrm elsewhere,} \end{array} \right. \nonumber \\ \end{aligned}$$
(10)

and

$$\begin{aligned}&u^{(n)}_{l}(\epsilon , \mu _1, \mu _2; x)\nonumber \\&\quad = \left\{ \begin{array}{l@{\quad }l} v_-({\mu _1}; x+nz_-(\mu _1; \gamma )), &{} {\mathrm{if}}\; -nz_-(\mu _1; \gamma )-\frac{\pi }{\gamma } \le x\le -nz_-(\mu _1; \gamma ) \\ &{}\quad -\sigma (\mu _1), \\ \epsilon , &{} {\mathrm{if}} -nz_- (\mu _1; \gamma )-\sigma (\mu _1) \le x \le L- nz_- (\mu _2; \gamma ) \\ &{}\quad - \sigma (\mu _2), \\ dv_-({\mu _2}; x-L+nz_-(\mu _2; \gamma )), &{} {\mathrm{if}}\; L-nz_-(\mu _2; \gamma )-\sigma (\mu _2) \le x \le L \\ &{}\quad -nz_-(\mu _2; \gamma ), \\ 0, &{} { \mathrm elsewhere.} \end{array} \right. \nonumber \\ \end{aligned}$$
(11)

In (10) \(\sigma (\mu )\) is given by (8), \(\alpha \) and d satisfy \(v_-({\mu _1};-\sigma (\mu _1))=dv({\mu _2};\sigma (\mu _2))=\epsilon \), and \(z_-(\mu _1; \gamma ))+z(\mu _2; \gamma )>0\). In (11) \(\sigma (\mu )\) is given by (8), \(\alpha \) and d satisfy \(v_-({\mu _1};-\sigma (\mu _1))=dv_-({\mu _2};-\sigma (\mu _2))=\epsilon \), and \(z_-(\mu _1; \gamma )>z_-(\mu _2; \gamma )\).

\(u^{(n)}(\epsilon , \mu _1, \mu _2; x)\) and \(u^{(n)}_{l}(\epsilon , \mu _1, \mu _2; x)\) may be viewed as extensions of \(u^{(n)}_r(\epsilon , \mu _1, \mu _2; x)\). \(u^{(n)}(\epsilon , \mu _1, \mu _2; x)\) is \(\epsilon \) in the interval \([-nz_-(\mu _1; \gamma )-\sigma (\mu _1), \sigma (\mu _2)+L-\pi /\gamma + nz(\mu _2; \gamma )]\) with the left-hand end point shifting leftward at speed \(z_-(\mu _1; \gamma )\) and the right-hand end point shifting rightward at speed \(z(\mu _2; \gamma )\), as n increases. \(u^{(n)}_{l}(\epsilon , \mu _1, \mu _2; x)\) is \(\epsilon \) in the interval \([-nz_-(\mu _1; \gamma )-\sigma (\mu _1), L-nz_-(\mu _2; \gamma )-\sigma (\mu _2)]\) with the end points shifting leftward at speeds \(z_-(\mu _1; \gamma )\) and \(z_-(\mu _2; \gamma )\), respectively, as n increases.

The following lemma shows that under appropriate conditions, proper translations of \(u^{(n)}(\epsilon , \mu _1, \mu _2;\) x), \(u^{(n)}_r(\epsilon , \mu _1, \mu _2; x)\) and \(u^{(n)}_{l}(\epsilon , \mu _1, \mu _2; x)\) are lower solutions of (1).

Lemma 4

  Assume that Hypotheses 1 are satisfied and that there exists \(b>0\) such that \(k(x)\equiv 0\) for \(|x|\ge b\). Suppose that the continuous initial function \(u_0 (x)\) is positive at a number x where \(g(x, u)>0\) for \(u>0\), and \(0\le {u}_0(x)\le {\beta }(\infty )\) for all x. Then for any small positive number \(\varepsilon \), there exist small positive numbers \(\alpha \), \(\epsilon \), and \(\gamma \), a large number \(L>4\pi /\gamma \), positive numbers \(\mu _1\) and \(\mu _2\), a real number \(\tilde{x}\), and a positive integer \(n_0\), such that the following statements hold:

  1. (i)

    If \(c>c^*(\infty )\) and \(\frac{\partial {g(-\infty , 0)}}{\partial u} >1\), for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) where \(z_-(\mu _1; \gamma )=c^*_-(-\infty )-\varepsilon /2\), \(z(\mu _2; \gamma )=c^*(-\infty )-\varepsilon /2\).

  2. (ii)

    If \(c^*(\infty )> c \ge \psi (0) \), for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}_r(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) where \(z(\mu _1; \gamma ) =c+\varepsilon /2\), \(z(\mu _2; \gamma )=c^*(\infty )-\varepsilon /2\).

  3. (iii)

    If \(\psi (0)>c\), for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) where \(z_-(\mu _1; \gamma ) =\min \{-c, c^*_-(\infty )\} -\varepsilon /2\) and \(z(\mu _2; \gamma )=c^*(\infty )-\varepsilon /2\).

  4. (iv)

    If \(- c < \psi _-(0)\) and \(\frac{\partial {g(-\infty , 0)}}{\partial u} >1\), for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) where \(z_-(\mu _1; \gamma ) =c^*_-(-\infty )-\varepsilon /2\) and \(z(\mu _2; \gamma )=\min \{c, c^*(-\infty )\} -\varepsilon /2\).

  5. (v)

    If \(c^*_-(-\infty )>-c\ge \psi _-(0)\) and \(\frac{\partial {g(-\infty , 0)}}{\partial u} >1\), for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}_l(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) where \(z_-(\mu _1; \gamma ) =c^*_-(-\infty )-\varepsilon /2\) and \(z_-(\mu _2; \gamma )=-c+\varepsilon /2\).

Proof

Define

$$\begin{aligned} {\hat{k}}(\mu )=\int _{-\infty }^{\infty }k(x+c)e^{\mu x}\hbox {d}x, \end{aligned}$$

and

$$\begin{aligned} {\hat{k}}(-\mu )=\int _{-\infty }^{\infty }k(x+c)e^{-\mu x}\hbox {d}x. \end{aligned}$$

It is easily seen that \({\hat{k}}(\mu )=\bar{k}(\mu )e^{-\mu c}\) and \({\hat{k}}(-\mu )=\bar{k}(-\mu )e^{\mu c}\) where \(\bar{k}(\mu )\) is given in Hypothesis 2.1. iv. b.

For \(0<\delta <1\), define

$$\begin{aligned} \hat{\phi }_{\delta }(\infty ; \mu )=(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(\infty , 0)}}{\partial u}{\hat{k}}(\mu )\right) =-c+(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(\infty , 0)}}{\partial u}\bar{k}(\mu )\right) , \end{aligned}$$

and

$$\begin{aligned} \hat{\phi }_{\delta -}(\infty ; \mu )=(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(\infty , 0)}}{\partial u}{\hat{k}}(-\mu )\right) =c+(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(\infty , 0)}}{\partial u}\bar{k}(-\mu )\right) . \end{aligned}$$

If \(\frac{\partial {g(-\infty , 0)}}{\partial u}>1\), define

$$\begin{aligned} \hat{\phi }_{\delta }(-\infty ; \mu )=(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(-\infty , 0)}}{\partial u}{\hat{k}}(\mu )\right) =-c+(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(-\infty , 0)}}{\partial u}\bar{k}(\mu )\right) , \end{aligned}$$

and

$$\begin{aligned} \hat{\phi }_{\delta -}(-\infty ;\mu )=(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(-\infty , 0)}}{\partial u}{\hat{k}}(-\mu )\right) =c+(1/\mu )\ln \left( (1-\delta )\frac{\partial {g(-\infty , 0)}}{\partial u}\bar{k}(-\mu )\right) . \end{aligned}$$

In what follows, we use \(\hat{u}_n(x)\) to denote \(u_n(x+nc)\) and use \(\hat{z}(\mu ; \gamma )\) and \(\hat{z}_-(\mu ; \gamma )\) to denote \({z}(\mu ; \gamma )-c\) and \({z}_-(\mu ; \gamma )+c\), respectively. We also use \(\hat{u}^{(n)}(\epsilon , \mu _1, \mu _2; x)\) to denote \({u}^{(n)}(\epsilon , \mu _1, \mu _2; x)\) with \(z_-(\mu _1;\gamma )\) replaced by \(\hat{z}_-(\mu _1;\gamma )\) and \(z(\mu _2;\gamma )\) replaced by \(\hat{z}(\mu _2;\gamma )\), and \(\hat{u}^{(n)}_r(\epsilon , \mu _1, \mu _2; x)\) to denote \({u}^{(n)}_r(\epsilon , \mu _1, \mu _2; x)\) with \(z(\mu _i;\gamma )\) replaced by \(\hat{z}(\mu _i;\gamma )\), i=1,2, and \(\hat{u}^{(n)}_l(\epsilon , \mu _1, \mu _2; x)\) to denote \({u}^{(n)}_l(\epsilon , \mu _1, \mu _2; x)\) with \(z_-(\mu _i;\gamma )\) replaced by \(\hat{z}_-(\mu _i;\gamma )\), i=1,2. Note that \(\hat{u}^{(n)}(\epsilon , \mu _1, \mu _2; x)={u}^{(n)}(\epsilon , \mu _1, \mu _2; x+nc)\), \(\hat{u}^{(n)}_r(\epsilon , \mu _1, \mu _2; x)={u}^{(n)}_r(\epsilon , \mu _1, \mu _2; x+nc)\), and \(\hat{u}^{(n)}_l(\epsilon , \mu _1, \mu _2; x)={u}^{(n)}_l(\epsilon , \mu _1, \mu _2; x+nc)\).

We now prove the statement (i). Define

$$\begin{aligned} \hat{c}^*_{\delta }(-\infty )=\inf _{\mu >0} \hat{\phi }_{\delta }(-\infty ; \mu ), \end{aligned}$$

and

$$\begin{aligned} \hat{c}^*_{\delta -}(-\infty )=\inf _{\mu >0} \hat{\phi }_{\delta -}(-\infty ; \mu ). \end{aligned}$$

As \(\delta \rightarrow 0\), \(\hat{c}^*_{\delta }(-\infty )\rightarrow {c}^*(-\infty )-c\) and \(\hat{c}^*_{\delta -}(-\infty ) \rightarrow c^*_-(-\infty )+c\). For any small positive \(\varepsilon \), choose \(\delta >0\) sufficiently small such that

$$\begin{aligned}&(1-\delta )\frac{\partial g(-\infty , 0)}{\partial u}>1,\\&\hat{c}^*_{\delta }(-\infty )> {c}^*(-\infty )-c-\varepsilon /2, \end{aligned}$$

and

$$\begin{aligned} \hat{c}^*_{\delta -}(-\infty )> c^*_-(-\infty )+c-\varepsilon /2. \end{aligned}$$

Observe that

$$\begin{aligned} \hat{\psi }(\mu )=\frac{\partial (\mu \hat{\phi }_{\delta }(-\infty ; \mu ))}{\partial \mu }=\psi (\mu )-c, \ \hat{\psi }_-(\mu )=\frac{\partial (\mu \hat{\phi }_{\delta -}(-\infty ; \mu ))}{\partial \mu }=\psi _-(\mu )+c \end{aligned}$$

where \(\psi (\mu )\) and \(\psi _-(\mu )\) are given by (4).

Since \(g(x, u)\ge g(-\infty , u)\) for \(u\ge 0\) and all \(x \in {\mathbb {R}}\), there exists a small positive \({\omega }\) such that \(g(x, u)\ge (1-\delta )\frac{\partial g(-\infty , 0)}{\partial u}u\) for \(0\le u \le {\omega }\) and \(x \in {\mathbb {R}}\).

Define

$$\begin{aligned} \hat{M}^-[{u}](x)=\min \left\{ {\omega }, (1-\delta )\int _{-\infty }^{\infty }{k}(x+c-y)\frac{\partial {g(-\infty , 0)}}{\partial u}{u}(y) \hbox {d}y\right\} . \end{aligned}$$

It is easily seen that for \(u(x)\ge 0\),

$$\begin{aligned} \hat{Q}[u](x)\ge \hat{M}^-[u](x). \end{aligned}$$
(12)

Let \({{\mu }}^-_{\delta }\) denote the smallest positive number at which \(\hat{\phi }_{\delta }(-\infty ; \mu )\) attains its infimum, and \({{\mu }}^-_{\delta -}\) denote the smallest positive number at which \(\hat{\phi }_{\delta -}(-\infty ; \mu )\) attains its infimum. The results from Weinberger (1982) show that for \(0< \mu < {{\mu }}^-_{\delta }\), \(\hat{\phi }_{\delta }(-\infty ; \mu )\) is strictly decreasing, \(\hat{\psi } (\mu )\) is strictly increasing, and \(\hat{\phi }_{\delta }(-\infty ; {\mu }^-_{\delta })=\hat{\psi }({{\mu }}^-_{\delta })=\psi ({{\mu }}^-_{\delta })-c =c^*_{\delta }-c\). Similar properties hold for \(\hat{\phi }_{\delta -}(-\infty ; \mu )\), \(\hat{\psi }_-(\mu )\), \({\mu }^-_{\delta -}\), and particularly \(\hat{\phi }_{\delta -}(-\infty ; {\mu }^-_{\delta })=\hat{\psi }_-({{\mu }}^-_{\delta })=\psi _-({{\mu }}^-_{\delta })+c =c^*_{\delta -}+c\). Due to (9), for small positive \(\varepsilon \), one can choose \(0<\mu _1<{{\mu }}^-_{\delta -}\), \(0<\mu _2<{{\mu }}^-_{\delta }\), and \(\gamma \) sufficiently small such that \(\hat{z}_-(\mu _1; \gamma )=c^*_-(-\infty )+c-\varepsilon /2\), \(\hat{z}(\mu _2; \gamma )=c^*(-\infty )-c-\varepsilon /2\), \(\hat{z}_-(\mu _1; \gamma )+\hat{z}(\mu _2; \gamma ) >0,\) and \(|\hat{z}_-(\mu _1; \gamma )|+|\hat{z}(\mu _2; \gamma )| < \pi /\gamma \). The work in Weinberger (1982, page 387) shows that for \(x\in {\mathbb {R}}\),

$$\begin{aligned}&\hat{ M}^-[{v}_-(\mu _1; \cdot )](x)\ge {v}_-(\mu _1; x+\hat{z}_-(\mu _1; \gamma )), \nonumber \\&\hat{M}^-[{v}(\mu _2; \cdot )](x)\ge {v}(\mu _2; x-\hat{z}(\mu _2; \gamma )). \end{aligned}$$
(13)

Choose \(L>4\pi /\gamma \). Since \(u^{(0)}(\epsilon , \mu _1, \mu _2; x)\ge v_-({\mu _1}; x-\ell _1)\) for \(0\le \ell _1\le L-\pi /\gamma \), (13) shows that \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge v_-({\mu _1}; x+\hat{z}_-(\mu _1; \gamma )-\ell _1)\) for \(0\le \ell _1\le L-\pi /\gamma \), and consequently \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge v_-({\mu _1}; x+\hat{z}_-(\mu _1; \gamma ))\) and \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge \epsilon \) for \( x \in [-\sigma (\mu _1)-\hat{z}_-(\mu _1; \gamma ), \ L-\pi /\gamma -\sigma (\mu _1)-\hat{z}_-(\mu _1; \gamma )]\). On the other hand since \(u^{(0)}(x)\ge dv({\mu _2}; x-\ell _2)\) for \(0\le \ell _2\le L-\pi /\gamma \), (13) shows that \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge dv({\mu _2}; x-\hat{z}(\mu _2; \gamma )-\ell _2)\) for \(0\le \ell _2\le L-\pi /\gamma \), and thus \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge dv({\mu _2}; x-\hat{z}(\mu _2; \gamma )-(L-\pi /\gamma ))\) and \(\hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge \epsilon \) for \(x\in [\sigma (\mu _2)+\hat{z}(\mu _2; \gamma ), \ L-\pi /\gamma +\sigma (\mu _2)+ \hat{z}(\mu _2; \gamma )]\). Since \(L>4\pi /\gamma \), \(\hat{z}_-(\mu _1; \gamma )+\hat{z}(\mu _2; \gamma ) >0,\) and \(|\hat{z}_-(\mu _1; \gamma )|+|\hat{z}(\mu _2; \gamma )| < \pi /\gamma \), the two intervals \([-\sigma (\mu _1)-\hat{z}_-(\mu _1; \gamma ), \ L-\pi /\gamma -\sigma (\mu _1)-\hat{z}_-(\mu _1; \gamma )]\) and \([\sigma (\mu _2)+\hat{z}(\mu _2; \gamma ), \ L-\pi /\gamma +\sigma (\mu _2)+ \hat{z}(\mu _2; \gamma )]\) overlap. It follows that for \(x\in {\mathbb {R}}\),

$$\begin{aligned} \hat{ M}^-[u^{(0)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge \hat{u}^{(1)}(\epsilon , \mu _1, \mu _2; x). \end{aligned}$$

Induction shows that for \(x\in {\mathbb {R}}\),

$$\begin{aligned} \hat{M}^-[\hat{u}^{(n)}(\epsilon , \mu _1, \mu _2; \cdot )](x)\ge \hat{u}^{(n+1)}(\epsilon , \mu _1, \mu _2; x). \end{aligned}$$

By Lemma 3 (b), for \(L>4\pi /\gamma \) there exist \(\tilde{x}\) and a positive integer \(n_0\) such that \(u_{n_0}(x+n_0c)>0\) for \(x\in [\tilde{x}-\pi /\gamma , \tilde{x}+L ]\). One can choose \(\epsilon \) sufficiently small so that \(u_{n_0}(x+n_0c)\ge \epsilon \) on \([\tilde{x}-\pi /\gamma , \tilde{x}+L]\). Since \(\hat{u}^{(0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x})\le \epsilon \) for \(x\in [\tilde{x}-\pi /\gamma , \tilde{x}+L ]\) and \(\hat{u}^{(0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x})\equiv 0\) outside this interval, \(u_{n_0}(x+n_0c)\ge u^{(0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x})\) or equivalently \(\hat{u}_{n_0}(x)\ge \hat{u}^{(0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x})\) for \(x\in {\mathbb {R}}\).

The inequality (12) and induction show that for \(n\ge n_0\), \(\hat{u}_n(x)\ge \hat{u}^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x})\) for \(x\in {\mathbb {R}}\), which is equivalent to \(u_n(x+nc)\ge \hat{u}^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-\tilde{x}) ={u}^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x+ (n-n_0)c-\tilde{x}) \) for \(x\in {\mathbb {R}}\). We therefore have \(u_n(x)\ge {u}^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) for \(x\in {\mathbb {R}}\). This completes the proof of the statement (i).

We next prove the statement (ii). Since \(\lim _{x\rightarrow \infty }g(x, u)=g(\infty , u)\), for any small positive numbers \(\delta \) and \(\omega \), there exists a sufficiently large number \(x_{1}\) such that for \(x\ge x_{1}\) and \(0\le u \le {\omega }\),

$$\begin{aligned} g(x_1, u)\ge (1-\delta )\frac{\partial g(\infty , 0)}{\partial u}u. \end{aligned}$$

We choose \(\delta \) sufficiently small such that for the given small positive \(\varepsilon \),

$$\begin{aligned} \hat{c}^*_{\delta }=\inf _{\mu>0} \hat{\phi }_{\delta }(\infty ; \mu )> {c}^*(\infty )-c-\varepsilon /2. \end{aligned}$$
(14)

Observe that

$$\begin{aligned} \frac{\partial (\mu \hat{\phi }_{\delta }(\infty ; \mu ))}{\partial \mu }=\hat{\psi } (\mu )=\psi (\mu )-c. \end{aligned}$$

Let \({{\mu }}_{\delta }\) denote the smallest positive number at which \(\hat{\phi }_{\delta }(\infty ; \mu )\) attains its infimum. For \(0< \mu < {{\mu }}_{\delta }\), \(\hat{\phi }_{\delta }(\infty ; \mu )\) is strictly decreasing, \(\hat{\psi } (\mu )\) is strictly increasing, and \(\hat{\phi }_{\delta }(\infty ; {{\mu }}_{\delta })=\hat{\psi }({{\mu }}_{\delta })=\psi ({{\mu }}_{\delta })-c =c^*_{\delta }-c\). Since \(c^*(\infty )>c\ge \psi (0)\) and \(\hat{z}(\mu _i; \gamma )={z}(\mu _i; \gamma )-c\) for \(i=1,2\), by (9), for small positive \(\varepsilon \), there exist \(0<\mu _1<\mu _2<{{\mu }}_{\delta }\) and a small positive \(\gamma \) such that \(\hat{z}(\mu _1; \gamma )= \varepsilon /2\), \(\hat{z}(\mu _2; \gamma )=c^*(\infty )-c-\varepsilon /2\), \(\hat{z}(\mu _2; \gamma ) > \hat{z}(\mu _1; \gamma ) \), and \(| \hat{z}(\mu _1; \gamma )| + |\hat{z}(\mu _2; \gamma ) |<\pi /\gamma \).

Choose \(L>4\pi /\gamma \). Since \(c^*(\infty )>c\), by Lemma 3 (a), there exists a positive integer \(n_0\) such that \(u_{n_0}(x+n_0c)>0\) on \([{x}_1, {x}_1+b+L]\). We choose \(\epsilon \) sufficiently small such that \(u_{n_0}(x+n_0c)\ge \epsilon \) on \([{x}_1, {x}_1+b+L]\). Define

$$\begin{aligned} \hat{M}[{u}](x)=\min \{{\omega }, (1-\delta )\int _{-\infty }^{\infty }{k}(x+c-y)\frac{\partial {g(\infty , 0)}}{\partial u}{u}(y) \hbox {d}y\}. \end{aligned}$$

We have that for \(u(x)\ge 0\) and \(x\ge x_1+b\),

$$\begin{aligned} \hat{Q}[u](x)\ge \hat{M}[u](x). \end{aligned}$$
(15)

Let \(\tilde{x}=x_1+b\). The work in Weinberger (1982, page 387) shows that for \(x\in {\mathbb {R}}\),

$$\begin{aligned}&\hat{ M}[{v}(\mu _1; \cdot -\tilde{x})](x)\ge v(\mu _1; x-\tilde{x}-\hat{z}(\mu _1; \gamma )), \\&\hat{M}[v (\mu _2; \cdot -\tilde{x})](x)\ge v(\mu _2; x-\tilde{x}-\hat{z}(\mu _2;\gamma )). \end{aligned}$$

The definitions of \(u^{(0)}_r(\epsilon , \mu _1, \mu _2; x)\) and \(v({\mu _1}; x)\) show that \(u^{(0)}_r(\epsilon , \mu _1, \mu _2; x-\tilde{x})\ge v({\mu _1}; x-\tilde{x}-\ell _1)\) for \(0\le \ell _1\le L-2\pi /\gamma \), and thus \(\hat{ M}[u^{(0)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge v({\mu _1}; x-\tilde{x}-\hat{z}(\mu _1; \gamma ))\) and \(\hat{ M}[u^{(0)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge \epsilon \) for \( x \in [\sigma (\mu _1)+\hat{z}(\mu _1; \gamma )+\tilde{x}, \ L-2\pi /\gamma +\sigma (\mu _1)+\hat{z}(\mu _1; \gamma )+\tilde{x}]\). We also have that \(u^{(0)}(x)\ge dv({\mu _2}; x-\tilde{x}-\ell _2)\) for \(\pi /\gamma \le \ell _2\le L-\pi /\gamma \), and thus \(\hat{ M}[u^{(0)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge dv({\mu _2}; x-\tilde{x}-\pi /\gamma -\hat{z}(\mu _1; \gamma ))\) and \(\hat{ M}[u^{(0)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge \epsilon \) for \( x \in [\pi /\gamma +\sigma (\mu _2)+\hat{z}(\mu _2; \gamma )+\tilde{x}, \ L-\pi /\gamma +\sigma (\mu _2)+\hat{z}(\mu _2; \gamma )+\tilde{x}]\). On the other hand, since \(L>4\pi /\gamma \), \(\sigma (\mu _2)<\sigma (\mu _1)\), \(\hat{z}(\mu _2; \gamma ) > \hat{z}(\mu _1; \gamma ) \), and \(| \hat{z}(\mu _1; \gamma )| + |\hat{z}(\mu _2; \gamma ) |<\pi /\gamma \), the two intervals \([\sigma (\mu _1)+\hat{z}(\mu _1; \gamma )+\tilde{x}, \ L-2\pi /\gamma +\sigma (\mu _1)+\hat{z}(\mu _1; \gamma )+\tilde{x}]\) and \([\pi /\gamma +\sigma (\mu _2)+\hat{z}(\mu _2; \gamma )+\tilde{x}, \ L-\pi /\gamma +\sigma (\mu _2)+\hat{z}(\mu _2; \gamma )+\tilde{x}]\) overlap. It follows that \(\hat{ M}^-[u^{(0)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge \hat{u}^{(1)}_r(\epsilon , \mu _1, \mu _2; x-\tilde{x})\). Induction shows that for \(x\in {\mathbb {R}}\),

$$\begin{aligned} \hat{M}[\hat{u}^{(n)}_r(\epsilon , \mu _1, \mu _2; \cdot -\tilde{x})](x)\ge \hat{u}^{(n+1)}_r(\epsilon , \mu _1, \mu _2; x-\tilde{x}). \end{aligned}$$

Since \(\hat{u}_{n_0}(x)\ge \hat{u}^{(0)}_r(\epsilon , \mu _1, \mu _2; x-\tilde{x})\) for \(x\in {\mathbb {R}}\), (15) and induction show that for \(n\ge n_0\), \(\hat{u}_n(x)\ge \hat{u}^{(n-n_0)}_r(\epsilon , \mu _1, \) \( \mu _2; x-\tilde{x})\) for \(x\in {\mathbb {R}}\), which is equivalent to \(u_n(x+nc)\ge {u}^{(n-n_0)}_r(\epsilon , \mu _1, \mu _2; x+(n-n_0)c-\tilde{x}) \) for \(x\in {\mathbb {R}}\). We therefore have \(u_n(x)\ge {u}^{(n-n_0)}_r(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) for \(x\in {\mathbb {R}}\). This completes the proof of the statement (ii).

To prove the statement (iii), one need only modify the proof of the statement (ii). Choose \(\delta \) sufficiently small such that \(\hat{c}^*_{\delta -}(\infty )=\inf _{\mu>0}\hat{\phi }_{\delta -}(\infty ; \mu )> c^*_-(\infty )+c-\varepsilon /2\) and (14) hold . We use \(\mu _{\delta -}\) to denote the smallest positive number where the infimum is attained. Since \(-c>-\psi (0)=\psi _-(0)\) and since \(c^*(\infty )>\psi (0)\), for any small positive number \(\varepsilon \), by (9), there exist \(0<\mu _1<\mu _{\delta -}\), \(0<\mu _2<{{\mu }}_{\delta }\), and small positive number \(\gamma \) such that \(\hat{z}_-(\mu _1; \gamma )=\min \{0, c^*_-(\infty )+c\}-\varepsilon /2\) and \(\hat{z}(\mu _2; \gamma )=c^*(\infty )-c-\varepsilon /2\). The proof of the statement (ii) with \(\hat{u}^{(n)}_r(\epsilon , \mu _1, \mu _2; x)\) replaced by \(\hat{u}^{(n)}(\epsilon , \mu _1, \mu _2; x)\) incorporating these \(\hat{z}_-(\mu _1; \gamma )\) and \(\hat{z}(\mu _2; \gamma )\) works to show the statement (iii).

If \(-c<\psi _-(0)\) and \(\frac{\partial {g(-\infty , 0)}}{\partial u} >1\), (9) shows that for any small positive number \(\varepsilon \) there exist \(0<\mu _1<{{\mu }}^-_{\delta -}\) and \(0<\mu _2<\mu _{\delta -}\) such that \(\hat{z}_-(\mu _1; \gamma )=c^*_-(-\infty )+c-\varepsilon /2\) and \(\hat{z}(\mu _2; \gamma )=\min \{0, c^*(-\infty )-c\}-\varepsilon /2\). The proof of the statement (i) with these \(\hat{z}_-(\mu _1; \gamma )\) and \(\hat{z}(\mu _2; \gamma )\) proves the statement (iv).

If \(-c\ge \psi _-(0)\) and \(\frac{\partial {g(-\infty , 0)}}{\partial u} >1\), due to (9), for any small positive number \(\varepsilon \), one can choose \(0<\mu _1<\mu _2<{{\mu }}^-_{\delta -}\) and \(\gamma \) sufficiently small such that \(\hat{z}_-(\mu _1; \gamma )=c^*_-(-\infty )+c-\varepsilon /2\) and \(\hat{z}_-(\mu _2; \gamma )=\varepsilon /2\). The proof of the statement (i) with \(\hat{u}^{(n)}(\epsilon , \mu _1, \mu _2; x)\) replaced by \(\hat{u}^{(n)}_l(\epsilon , \mu _1, \mu _2; x)\) incorporating these \(\hat{z}_-(\mu _1; \gamma )\) and \(\hat{z}_-(\mu _2; \gamma )\) proves the statement (v). The proof is complete. \(\square \)

1.2 Proofs of Theorems

We now provide the proofs for the theorems. Theorem 1 is proven by employing Lemma 2 and the assumption \(g(x, u)\le \ell (x) u\) with \(\ell (-\infty )=\frac{\partial {g(-\infty , 0)}}{\partial u}\) and \(\ell (\infty )=\frac{\partial {g(\infty , 0)}}{\partial u}\) given in Hypotheses 1 (iii) (b). In the proofs of Theorem 1–Theorem 4, this assumption and Lemma 3.3 and its proof in Li et al. (2014a) are used to find upper bounds for the spreading speeds, while Lemma 4 is used to establish lower bounds for the spreading speeds. Lemma 2 is also used to determine the asymptotic behavior of solutions near \(-\infty \) in the proofs of Theorem 2 (ii) (b) and Theorem 3 (i) (b).

1.2.1 Proof of Theorem 1

Proof

Hypotheses 1 (i) and (iii) (b) show that \(g(x-nc, u_n)\le g(\infty , u_n)\le \frac{\partial {g(\infty , 0)}}{\partial u} u_n\). It follows from (1) that \(u_n(x)\) satisfies

$$\begin{aligned} u_{n+1}(x)\le \int _{-\infty }^{\infty }k(x-y)\frac{\partial {g(\infty , 0)}}{\partial u}u_n(y)\hbox {d}y. \end{aligned}$$
(16)

Choose \(\epsilon \) with \(0<\epsilon < c-c^*(\infty )\). Let \({\mu }_1\) denote the smallest positive solution of \(\phi (\infty ; \mu )=c^*(\infty )+\epsilon /2\). Choose \(\rho \) sufficiently large such that \(u_0(x)\le \rho e^{-{\mu }_1 x}\). Using (16) and induction,

$$\begin{aligned} u_n(x)\le \rho e^{-{\mu }_1(x-n(c^*(\infty )+\epsilon /2))}. \end{aligned}$$

It follows that for any \(\varepsilon >0\), there exists a positive integer \(N_1\) such that for \(n\ge N_1\) and \(x\ge n(c^*(\infty )+\epsilon )\),

$$\begin{aligned} u_n(x) < \varepsilon . \end{aligned}$$
(17)

Let \(\bar{u}_n(x)\) be the sequence satisfying (6) with \(\bar{u}_0(x)\equiv \beta (\infty )\). Lemma 2 (i) shows that \(\bar{u}_n(x)\) decreases point-wise to \(\bar{u}(x)\), and \(\bar{u}(-\infty )=0\) due to \(\frac{\partial {g(-\infty , 0)}}{\partial u}<1\). For the given \(\varepsilon >0\), there exists \(x_0\) such that \(\bar{u}(x_0)<\varepsilon /2\). On the other hand, there exists \(N_2\) such that for \(n\ge N_2\), \(0\le \bar{u}_n(x_0)-\bar{u} (x_0)\le \varepsilon /2\). It follows that for \(n>N_2\), \(0\le \bar{u}_n(x_0) \le \bar{u}_n(x_0)-\bar{u} (x_0)+\bar{u} (x_0)<\varepsilon \). Since \(\bar{u}_n(x)\) is nondecreasing in x, we have that for \(n>N_2\) and \(x\le x_0\), \(\bar{u}_n(x)<\varepsilon \). In view of Lemma 2 (ii), \( u_n(x+nc)\le \bar{u}_n(x). \) We therefore have that for \(n\ge N_2\) and \(x<x_0+nc\),

$$\begin{aligned} u_n(x)<\varepsilon . \end{aligned}$$
(18)

Since \(c>c^*(\infty )+\epsilon \), there exists a positive integer \(N_3\) such that \(x_0+nc >n(c^*(\infty )+\epsilon ).\) It follows from (17) and (18) that for \(n\ge \max \{ N_1, N_2, N_3 \}\) and for all x, \(u_n(x)<\varepsilon \). The proof is complete. \(\square \)

1.2.2 Proof of Theorem 2

Proof

Choose \(\rho _1 >0\) such that \(u_0(x)\le \rho _1 e^{-\hat{\mu }_1 x}\) where \(\hat{\mu }_1\) is the smallest solution of \(\phi (\infty ; \mu )=c^*(\infty )+\varepsilon /2\). The inequality (16) and induction show that

$$\begin{aligned} {u}_n(x)\le \rho _1 e^{-\hat{\mu }_1 (x- n(c^*(\infty )+\varepsilon /2))}. \end{aligned}$$

The statement (i)(a) immediately follows.

We now prove the statement (i) (b). Since \(c^*_-(\infty )>\psi _-(0)=-\psi (0)\), in the case of \(c\ge \psi (0)\), \(\min \{-c, c^*_-(\infty )\}=-c\). We first consider this case, and assume that there exists \(b>0\) such that \(k(x)\equiv 0\) for \(|x|\ge b\). Since \(c^*(\infty )>c\ge \psi (0)\), Lemma 4 (ii) shows that for any small positive number \(\varepsilon \), there exist small positive numbers \(\alpha \), \(\epsilon \), and \(\gamma \), a large number \(L>4\pi /\gamma \), positive numbers \(\mu _1\) and \(\mu _2\), a real number \(\tilde{x}\), and a positive integer \(n_0\), such that for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}_r(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) with \(z(\mu _1; \gamma ) =c+\varepsilon /2\) and \(z(\mu _2; \gamma )=c^*(\infty )-\varepsilon /2\).

Hypotheses 1 i–iii imply that for any small positive \(\eta >0\), there exists a large number \(\hat{x}\) such that for small positive u,

$$\begin{aligned} g(\hat{x}, u)>u, \ \text{ and } \beta (\hat{x})>\beta (\infty )-\eta . \end{aligned}$$

Since \(z (\mu _1; \gamma )>c\), there is \(N_0\) such that for \(n\ge N_0\) and \(x\ge \bar{x}+\sigma (\mu _1)+(n-n_0)z(\mu _1; \gamma )\),

$$\begin{aligned} x-nc \ge \hat{x}. \end{aligned}$$

We use \(g^1(x, \epsilon )\) to denote \(g(x, \epsilon )\) and \(g^n(x, \epsilon )\) to denote \(g(x, g^{(n-1)}(x))\) for \(n>1\). Since \(\epsilon \) is small, there exists \(N_1\) such that

$$\begin{aligned} g^{N_1}(\hat{x}, \epsilon )>\beta (\infty )-2\eta . \end{aligned}$$

On the other hand, since \(z(\mu _2; \gamma )>z(\mu _1; \gamma )\), there exists \(N_2\) such that such that for \(n\ge N_2\),

$$\begin{aligned}&\bar{x}+\sigma (\mu _1)+(n-n_0)z (\mu _1; \gamma )+N_1b <\bar{x}+\sigma (\mu _2)+L-\frac{\pi }{\gamma }\\&\quad +(n-n_0)z (\mu _2; \gamma )-N_1b. \end{aligned}$$

Observe that for \(n\ge n_0\),

$$\begin{aligned} u_{n}(x)\ge u^{(n-n_0)}_r(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x}) =\epsilon \end{aligned}$$

for \(x\in [\bar{x}+\sigma (\mu _1)+(n-n_0)z(\mu _1; \gamma ), \bar{x}+\sigma (\mu _2)+L-\pi /\gamma +(n-n_0)z(\mu _2; \gamma )]\) with \(\bar{x}=n_0c+\tilde{x}\). It follows from (1) that for \(n\ge N_0+N_1+N_2\) and \(x\in [\bar{x}+\sigma (\mu _1)+(n-n_0)z (\mu _1; \gamma )+bN_1, \; \bar{x} +\sigma (\mu _2)+L-\frac{\pi }{\gamma } +(n-n_0)z (\mu _2; \gamma )-bN_1]\),

$$\begin{aligned} u_{n+1}(x)\ge g^{N_1}(\hat{x}, \epsilon )\ge {\beta }(\infty )-2\eta . \end{aligned}$$

Since \(c^*(\infty )>c\) and \(\varepsilon \) is small, \(z(\mu _2; \gamma )=c^*(\infty )-\varepsilon /2>c+\varepsilon >z(\mu _1; \gamma ) =c+\varepsilon /2\). It follows that there exists an integer \(N_3>N_0+N_1+N_2\) such that for \(n\ge N_3\),

$$\begin{aligned}&\bar{x}+b+\sigma (\mu _1)+(n-n_0)z (\mu _1; \gamma )+N_1b<n (c+\varepsilon )<n(c^*(\infty )-\varepsilon ) \\&\quad <\bar{x}+b +\sigma (\mu _2)+L-\frac{\pi }{\gamma } +(n-n_0)z (\mu _2; \gamma )-N_1b. \end{aligned}$$

We therefore have that for \(n\ge N_3\),

$$\begin{aligned} \inf _{n(c+\varepsilon ) \le x\le n(c^* (\infty )-\varepsilon )} {u}_n(x)\ge {\beta }(\infty )-2\eta . \end{aligned}$$
(19)

Since \(\eta \) is arbitrary and \(u_n(x)\le \beta (\infty )\) for all n and x, the statement (i) (b) holds.

If k does not have bounded support, we choose a smooth nonincreasing function \(\zeta \) with the property

$$\begin{aligned} \zeta (s)= \left\{ \begin{array}{ll} 1, &{}\quad {\mathrm{if}}\; s\le 1/2,\\ 0, &{}\quad {\mathrm{if}}\; s \ge 1. \end{array} \right. \end{aligned}$$

We approximate the kernel k by

$$\begin{aligned} k_m(x)=\zeta \left( \frac{|x|}{m}\right) k(x) \end{aligned}$$

which has bounded support. We define the number \(c^*_m(\infty )\) by replacing k by \(k_m\) in (3). The work in Weinberger (1982 see (9.18)) shows that if \(\bar{k}(\mu )\) is convergent for all \(\mu >0\),

$$\begin{aligned} \lim _{m\rightarrow \infty } c^*_m(\infty )=c^*(\infty ). \end{aligned}$$
(20)

If \(\bar{k}(\mu )\) is divergent at a positive number \(\mu \), the proof of Theorem 2.1 in Weinberger and Zhao (2010) essentially works to show that (20) is still valid. We define the operator \({Q}_{m,n}\) and the function \(\psi _m(\mu )\) by replacing k by \(k_m\) in the definitions of \({Q}_n\) and \(\psi (\mu )\), respectively. For any small positive \(\varepsilon \), we choose m sufficiently large such that \(c^*_m(\infty )>c\) and \((\int _{-\infty }^{\infty }k_m(y)\hbox {d}y) g(\infty , u)=u\) has a positive root. We use \({\beta }_m(\infty )\) to denote the smallest of such roots. Then for large m the statement (i) (b) holds for the solution \(u_{m,n}(x)\) of the recursion defined by \(Q_{m,n}\) with \(\psi (0)\) replaced by \(\psi _m(0)\) and \(\beta (\infty )\) replaced by \(\beta _m(\infty )\). That is, if the continuous initial function \(u_{m,0}(x)>0\) at a number x where \(g(x, u)>0\) for \(u>0\) and \(u_{m,0}(x)\le \beta (\infty )\), then for any small positive \(\varepsilon \),

$$\begin{aligned} \lim _{n\rightarrow \infty }\left[ \sup _{n(c+\varepsilon )\le x\le n(c^*_m (\infty )-\varepsilon )} |\beta _m(\infty )-{u}_{m,n}(x)|\right] =0. \end{aligned}$$
(21)

Let \(u_n(x)\) be a solution of (1) with \(u_0(x)\ge u_{m,0}(x)\). Since \(Q_n[u](x)\ge Q_{m,n}[u](x)\) for \(u(x)\ge 0\), induction shows \(u_n(x)\ge u_{m,n}(x)\) for \(n>1\). Since \(\beta _m(\infty )\) increases to \({\beta }(\infty )\) and \(\psi _m(0) \rightarrow \psi (\mu )\) as \(m\rightarrow \infty \), \(0\le u_{m,n} (x)\le {\beta }_m(\infty )\), and \(0\le u_n(x) \le {\beta }(\infty )\), (21) implies that the statement (i) (b) holds for \(u_n(x)\). We have proven the statement (i) (b) if \(c\ge \psi (0)\).

If \(c < \psi (0)\) or equivalently \(-c>-\psi (0)=\psi _-(0)\), Lemma 4 (iii) shows that for any small positive number \(\varepsilon \), there exist small positive numbers \(\alpha \), \(\epsilon \), and \(\gamma \), a large number L, positive numbers \(\mu _1\) and \(\mu _2\), a real number \(\tilde{x}\), and a positive integer \(n_0\), such that for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) with \(z_-(\mu _1; \gamma )=\min \{-c, c^*_-(\infty )\}-\varepsilon /2\) and \(z(\mu _2; \gamma )=c^*(\infty )-\varepsilon /2\). The statement (i) (b) can then be shown by using an argument similar to what is used above for the case of \(c\ge \psi (0)\). We omit the details here.

We next show the statement (ii) (a). By using an argument similar to the proof of (i) (a), we have that for any small \(\epsilon >0\), there exist \(\rho _1 >0\) such that

$$\begin{aligned} {u}_n(x)\le \rho _1 e^{-{\mu }_1 (x- n(c^*(\infty )+\epsilon ))} \end{aligned}$$
(22)

where \({\mu }_1\) is the smallest solution of \(\phi (\infty ; \mu )=c^*(\infty )+\epsilon .\)

Since

$$\begin{aligned} \lim _{\delta \rightarrow 0}\inf _{\mu >0} (1/\mu )\ln \left[ \left( \frac{\partial g(-\infty , 0)}{\partial u}+\delta \right) \bar{k}(\mu )\right] =c^*(-\infty ), \end{aligned}$$

for the small positive \(\epsilon \), there exists a small \(\delta >0\) such that \((1/\mu ) \ln [(\frac{\partial g(-\infty , 0)}{\partial u}+\delta ) \bar{k}(\mu )] = c^*(-\infty )+ \epsilon /2\) has a positive root. We use \({\mu }_2\) to denote the smallest of such roots. Hypotheses 1 (i) and (iii) imply that there exists a number \(x_0\) such that for \(x\le x_0\),

$$\begin{aligned} \max \{\ell (x), \ \frac{\partial {g(-\infty , 0)}}{\partial u}+\delta \}= \frac{\partial {g(-\infty , 0)}}{\partial u}+\delta . \end{aligned}$$
(23)

The proof of (6.2) in Li et al. (2014a) with \(\ell (x-y)\) replaced by \(\ell (x-y-nc)\) shows that for the given \(\epsilon >0\) and \({\mu }_2>0\), there exists \(T>0\) such that for any real number x,

$$\begin{aligned} \int _{-\infty }^{\infty }k(y) {\ell (x-y-nc)}e^{{\mu }_2 (x-y)}\hbox {d}y \le \left( 1+\frac{\mu _2\epsilon }{2}\right) \int _{-T}^{\infty }k(y) {\ell (x-y-nc)}e^{{\mu }_2 (x-y)}\hbox {d}y. \end{aligned}$$
(24)

We choose T sufficiently large so that \(T>|c^*(-\infty ) |\). Choose \(\rho _2 >0\) such that

$$\begin{aligned} {u}_0(x)\le \rho _2 e^{-{\mu }_2 x} \end{aligned}$$

for all x. We choose \(\epsilon \) sufficiently small so that \(\mu _1\approx \mu ^*\), \(\mu _2\approx \mu ^*_-\), \(\mu _1>\mu _2\), and

$$\begin{aligned} c> \frac{\mu _1(c^*(\infty )+\epsilon )-\mu _2(c^*(-\infty )+\epsilon )}{\mu _1-\mu _2}. \end{aligned}$$
(25)

We choose large \(\rho _1\) and \(\rho _2\) so that

$$\begin{aligned} \rho _1/\rho _2\le e^{(\mu _1-\mu _2)(x_0-T-c)}. \end{aligned}$$
(26)

It follows from (16), (23), and (24) that for \(x\le x_0-T\),

$$\begin{aligned} \begin{aligned} u_1(x)&=\int _{-\infty }^{\infty }k(y) g(x-y, u_0(x-y))\hbox {d}y \\&\le \left( 1+\frac{\mu _2\epsilon }{2}\right) \rho _2 \int _{-T}^{\infty }k(y) {\ell (x-y)}e^{-{\mu }_2 (x-y)}\hbox {d}y \\&\le \left( 1+\frac{\mu _2\epsilon }{2}\right) \rho _2 \int _{-T}^{\infty }k(y) \left( \frac{\partial {g(-\infty , 0)}}{\partial u}+\delta \right) e^{-{\mu }_2 (x-y)}\hbox {d}y \\&\le \left( 1+\frac{\mu _2\epsilon }{2}\right) \rho _2 \int _{-\infty }^{\infty }k(y) \left( \frac{\partial {g(-\infty , 0)}}{\partial u}+\delta \right) e^{-{\mu }_2 (x-y)}\hbox {d}y \\&=\left( 1+\frac{\mu _2\epsilon }{2}\right) \rho _2 e^{-{\mu }_2 (x-(c^*(-\infty )+\epsilon /2))} \\&\le \rho _2 e^{-{\mu }_2 (x-(c^*(-\infty )+\epsilon ))}. \end{aligned} \end{aligned}$$
(27)

On the other hand, (25) and (26) show that

$$\begin{aligned} \rho _1 e^{-\mu _1 (x-(c^*(\infty )+\epsilon ))} \le \rho _2 e^{-{\mu }_2 (x-(c^*(-\infty )+\epsilon ))} \end{aligned}$$

for \(x> x_0-T\). It follows from this, (22), and (27) that

$$\begin{aligned} u_1(x) \le \rho _2 e^{-{\mu }_2 (x-(c^*(-\infty )+\epsilon ))} \end{aligned}$$

for all x. Assume that for some n,

$$\begin{aligned} u_n(x) \le \rho _2 e^{-{\mu }_2 (x-n(c^*(-\infty )+\epsilon ))} \end{aligned}$$
(28)

for all x. Then from (16), (23), and (24) we have

$$\begin{aligned} \begin{aligned} u_{n+1}(x)&=\int _{-\infty }^{\infty }k(y) g(x-y-nc, u_n(x-y))\hbox {d}y \\&\le \left( 1+\frac{\mu _2\epsilon }{2}\right) \rho _2 \int _{-T}^{\infty }k(y) {\ell (x-y-nc)}{u} e^{-{\mu }_2 (x-y-n(c^*(-\infty )+\epsilon /2))} \hbox {d}y \\&\le \rho _2 e^{-{\mu }_2 (x-(n+1)(c^*(-\infty )+\epsilon ))}. \end{aligned} \end{aligned}$$
(29)

for \(x\le x_0-T+nc\). It follows from (22), (25), and (26) that

$$\begin{aligned} u_{n+1}(x)\le \rho _2 e^{-{\mu }_2 (x-(n+1)(c^*(-\infty )+\epsilon ))} \end{aligned}$$
(30)

for \(x> x_0-T+nc\). This and (29) show that (30) is valid for all x. By induction, (28) holds for all n and all x. For any small \(\varepsilon >0\), choose \(\epsilon =\varepsilon /2\). Then (28) yields the statement (ii) (a).

To prove (ii) (b), we first assume that there exists \(b>0\) such that \(k(x)\equiv 0\) for \(|x|\ge b\). Since \(c>c^*(-\infty )>\psi (0)=-\psi _-(0)\), Lemma 4 (iv) shows that for any small positive number \(\varepsilon \), there exist small positive numbers \(\alpha \), \(\epsilon \), and \(\gamma \), a large number L, positive numbers \(\mu _1\) and \(\mu _2\), a real number \(\tilde{x}\), and a positive integer \(n_0\), such that for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) with \(z_-(\mu _1; \gamma ) =c^*_-(-\infty )-\varepsilon /2\) and \(z(\mu _2; \gamma )=c^*(-\infty )-\varepsilon /2\). It follows that for \(n\ge n_0\),

$$\begin{aligned} u_{n}(x)\ge \epsilon \end{aligned}$$

for \(x\in [\bar{x}-\sigma (\mu _1)-(n-n_0)z_-(\mu _1; \gamma ), \bar{x}+\sigma (\mu _2)+L-\pi /\gamma +(n-n_0)z(\mu _2; \gamma )]\) with \(\bar{x}=n_0c+\tilde{x}\). Note that \(\beta (x)\ge \beta (-\infty )\) for all x. For any small \(\eta >0\), an argument similar to what is used to prove (19) shows that there exists a positive integer N such that for \(n\ge N\),

$$\begin{aligned} \inf _{ -n(c^*_-(-\infty ) - \varepsilon )\le x\le n(c^*(-\infty )-\varepsilon )} {u}_n(x)\ge {\beta }(-\infty )-\eta . \end{aligned}$$
(31)

If \({k}\) does not have bounded support, an argument similar to the last part of the proof of the statement (i) (b) works to show that (31) still holds.

On the other hand, \(u_n(x+nc)\le \bar{u}_n (x)\) where \(\bar{u}_n(x)\) is defined in Lemma 2. It follows that for \(x\le n(c^*(-\infty )-\epsilon )\), \(u_n(x)\le \bar{u}_n ( n(c^*(-\infty )-\epsilon -c))\). Since \(c>c^*(\infty )>c^*(-\infty )\) and \(\epsilon \) is positive, \(c^*(-\infty )-\epsilon -c<0\). Lemma 2 (i) implies that \(\bar{u}_n ( n(c^*(-\infty )-\epsilon -c))\) converges to \(\beta (-\infty )\) as \(n \rightarrow \infty \). We therefore have that for the given \(\eta >0\) there exists \(N_2>N_1\) such that for \(n>N_2\) and \(x\le n(c^*(-\infty )-\epsilon )\),

$$\begin{aligned} u_n(x)\le \beta (-\infty )+\eta . \end{aligned}$$

This and (31) show that the statement (ii) (b) holds. The proof is complete. \(\square \)

1.2.3 Proof of Theorem 3

Proof

We first prove the statement (i). Recall that \(\hat{u}_n(x)=u_n(x+nc)\) satisfies (6). Since \(c^*_-(-\infty )+c>0\), Lemma 3.3 (b) in Li et al. (2014a) with k(x) replaced by \(k(x+c)\) and \(c^*_-(-\infty )\) replaced by \(c^*_-(-\infty )+c\) shows that for any positive \(\varepsilon \) there exist positive numbers \(\rho \) and \(\hat{\mu }\) such that for all n,

$$\begin{aligned} u_n(x+nc)\le \min \{\rho e^{\hat{\mu }(x+n(c^*_-(-\infty )+c+\varepsilon /2))}, \beta (\infty )\}. \end{aligned}$$

It follows that \(u_n(x)\le \min \{\rho e^{\hat{\mu }(x+n(c^*_-(-\infty )+\varepsilon /2))}, \beta (\infty )\}.\) This leads to the statement (i) (a).

To prove the statement (i) (b), we first consider the case of \(c^*_-(-\infty )>-c\ge \psi _-(0)\) and assume that there exists \(b>0\) such that \(k(x)\equiv 0\) for \(|x|\ge b\). Lemma 4 (v) shows that for any small positive number \(\varepsilon \), there exist small positive numbers \(\alpha \), \(\epsilon \), and \(\gamma \), a large number L, positive numbers \(\mu _1\) and \(\mu _2\), a real number \(\tilde{x}\), and a positive integer \(n_0\), such that for \(n\ge n_0\), \(u_n(x)\ge u^{(n-n_0)}_l(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) with \(z_-(\mu _1; \gamma )=c^*_-(-\infty )-\varepsilon /2\) and \(z_-(\mu _2, \gamma )=-c+\varepsilon /2\). The proof of Theorem 2 (ii) (b) with \(u^{(n)}(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) replaced by \(u^{(n)}_l(\epsilon , \mu _1, \mu _2; x-n_0c-\tilde{x})\) incorporating these \(z_-(\mu _1; \gamma ) \) and \(z_-(\mu _2, \gamma )\) works to show the validity of the statement (i) (b). The proof for the case of \(-c< \psi _-(0)\) is the proof of Theorem 2 (ii) (b) with \(z(\mu _2; \gamma )\) now given by \(z(\mu _2; \gamma )=\min \{c, c^*(-\infty )\}-\varepsilon /2\).

To prove the statement (ii) (a), recall that \(\hat{u}_n(x)=u_n(x+nc)\) satisfies (6). Since \(c^*_-(-\infty )+c<0\), Lemma 3.3 (c) in Li et al. (2014a) with k(x) replaced by \(k(x+c)\) shows that for any positive \(\varepsilon \) there exist positive numbers \(\hat{\rho }\) and \(\hat{\mu }\) such that for all n,

$$\begin{aligned} u_n(x+nc)\le \min \{\hat{\rho } e^{\hat{\mu } x}, \beta (\infty )\}. \end{aligned}$$

It follows that

$$\begin{aligned} u_n(x)\le \min \{\hat{\rho } e^{\hat{\mu }(x-nc)}, \beta (\infty )\}. \end{aligned}$$

This leads to the statement (ii) (a). Since \(-c^*_-(\infty )\le c\), \(\min \{-c, c^*_-(\infty )\}=-c\), the statement (ii)(b) follows from Theorem 2 (i) (b).

We finally prove the statement (iii). Choose \(\rho _1>0\) such that \(u_0(x)\le \rho _1e^{\mu _1 x}\) where \(\mu _1\) is the smallest root of \(\phi _-(\infty ; \mu )=c^*_-(\infty )+\varepsilon /2.\) The inequality (16) and induction show that

$$\begin{aligned} {u}_n(x)\le \rho _1 e^{\mu _1 (x+ n(c^*_-(\infty )+\varepsilon /2))}. \end{aligned}$$
(32)

It follows immediately the statement (iii) (a).

Since \(c<-c^*_-(\infty )\) implies \(c^*(\infty )>c\), the statement (iii) (b) follows from Theorem 2 (i) (b). The proof is complete. \(\square \)

1.2.4 Proof of Theorem 4

Proof

It follows from (32) that for any \(\eta >0\) there exist \(N_1>0\) such that

$$\begin{aligned} u_n(x)<\eta , \text{ for } n>N_1 \text{ and } x\le -n(c^*(-\infty )+\varepsilon ). \end{aligned}$$
(33)

On the other hand, Lemma 2 shows that \(\beta (-\infty )=0\), and that for any \(\eta >0\) there exist a sufficiently negative \(\tilde{x}\) and \(N>0\) such that

$$\begin{aligned} u_{n}(x)<\eta , \text{ for } n>N_2 \text{ and } x\le \tilde{x}+nc. \end{aligned}$$
(34)

Since \(x\le -n(-c+\varepsilon )\) implies \(x\le \tilde{x}+nc\) for large n, (33) and (34) show that there exists \(N_3>\max \{N_1, N_2 \}\) such that for \(n>N_3\), \(u_{n}(x)<\eta \) for \(x\le -n(\min \{-c, \ c^*_-(\infty )\}+\varepsilon )\). This proves the statement (a).

The statement (b) directly follows from Theorem 2 (i) (b). The proof is complete. \(\square \)

1.2.5 Proof of Corollary 1

Proof

Statements (a) and (b) follow from Theorem 2 (i). Statement (c) follows from Theorem 3 (i) (b). Statement (d) follows from Theorem 3 (i) (a). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Bewick, S., Barnard, M.R. et al. Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Bull Math Biol 78, 1337–1379 (2016). https://doi.org/10.1007/s11538-016-0180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0180-2

Keywords

Mathematics Subject Classification

Navigation