Skip to main content
Log in

Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This study revisits the minimal model for a plankton ecosystem proposed by Scheffer with spatial diffusion of plankton and the delay of the maturation period of herbivorous zooplankton. It deepens our understanding of effects of the nutrients and the predation of fish upon zooplankton on the dynamical patterns of the plankton system and also presents new phenomena induced by the delay with spatial diffusion. When the nutrient level is sufficient low, the zooplankton population collapses and the phytoplankton population reaches its carrying capacity. Mathematically, the global stability of the boundary equilibrium is proved. As the nutrient level increases, the system switches to coexistent equilibria or oscillations depending on the maturation period of zooplankton and the predation rate of fish on herbivorous zooplankton. Under an eutrophic condition, there is a unique coexistent homogeneous equilibrium, and the equilibrium density of phytoplankton increases, while the equilibrium density of herbivorous zooplankton decreases as the fish predation rate on herbivorous zooplankton is increasing. The study shows that the system will never collapses under the eutrophic condition unless the fish predation rate approaches infinite. The study also finds a functional bifurcation relation between the delay parameter of the maturation period of herbivorous zooplankton and the fish predation rate on herbivorous zooplankton that, above a critical value of the fish predation rate, the system stays at the coexistent equilibrium, and below that value, the system switches its dynamical patterns among stable and unstable equilibria and oscillations. The oscillations emerge from Hopf bifurcations, and a detailed mathematical analysis about the Hopf bifurcations is carried out to give relevant ecological predications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD (1976) Life history patterns in zooplankton. Am Nat 110:165–180

    Article  Google Scholar 

  • Anderson D (1997) Turning back the harmful red tide. Nature 338:513–514

    Article  Google Scholar 

  • Beretta E, Bischi G, Solimano F (1990) Stability in chemostat equations with delayed nutrient recycling. J Math Biol 28:99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Chattopadhyay J, Sarkar R (2002) A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J Math Appl Med Biol 19:137–161

    Article  MATH  Google Scholar 

  • Chattopadhyay J, Sarkar R, Mandal S (2002) Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling. J Theor Biol 215:333–344

    Article  Google Scholar 

  • Dasson P, Montresor M (2011) Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J Plankton Res 33:2–12

    Google Scholar 

  • Du Y, Hsu S (2010) On a nonlocal reaction–diffusion problem arising from the modeling of phytoplankton growth. SIAM J Math Anal 42:1305–1333

    Article  MathSciNet  MATH  Google Scholar 

  • Du Y, Mei L (2011) On a nonlocal reaction–diffusion–advection equation modelling phytoplankton dynamics. Nonlinearity 24:319–349

    Article  MathSciNet  MATH  Google Scholar 

  • Dubey B, Kumari N, Upadhyay RK (2009) Spatiotemporal pattern formation in a diffusive predator–prey system: an analytical approach. J Appl Math Comput 31:413–432

    Article  MathSciNet  MATH  Google Scholar 

  • Duinker J, Wefer G (1994) Das \(CO_{2}\)-problem und die Rolle des Ozeans. Naturwissenschaften 81:237–242

    Article  Google Scholar 

  • Faria T (2000) Normal forms and Hopf bifurcation for partial differential equations with delays. Trans Am Math Soc 352:2217–2238

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming RH (1939) The control of diatom populations by grazing. J Cons Perm Int Explor Mer 14:210–227

    Article  Google Scholar 

  • Freedman HI, Ruan S (1994) On reaction–diffusion systems of zooplankton–phytoplankton–nutrient models. Differ Equ Dyn Syst 2:49–64

    MathSciNet  MATH  Google Scholar 

  • Hallegraeff G (1993) A review of harmful algae blooms and the apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Hassard B, Kazarinoff N, Wan Y (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • He X, Ruan S (1998) Global stability in chemostat-type plankton models with delayed nutrient recycling. J Math Biol 37:253–271

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu S, Lou Y (2010) Single phytoplankton species growth with light and advection in a water column. SIAM J Appl Math 70:2942–2974

    Article  MathSciNet  MATH  Google Scholar 

  • Huisman J, Weissing F (1994) Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75:507–520

    Article  Google Scholar 

  • Huisman J, Weissing F (1995) Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat 146:536–564

    Article  Google Scholar 

  • Larsson P (1978) The life cycle dynamics and production of zooplankton in Ovre Heimdalsvatn. Holarct Ecol 1:162–218

    Google Scholar 

  • Levin SA, Segel LA (1976) Hypothesis for origin of planktonic patchiness. Nature 259:659

    Article  Google Scholar 

  • Malchow H (2000) Motional instabilities in prey–predator systems. J Theor Biol 204:639–647

    Article  Google Scholar 

  • Malchow H, Radtke B, Kallache M, Medvinsky A, Tikhonov D, Petrovskii S (2000) Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion. Nonlinear Anal Real World Appl 1:53–67

    Article  MathSciNet  MATH  Google Scholar 

  • Malchow H, Petrovskii S, Medvinsky A (2001) Pattern formation in models of plankton dynamics, a synthesis. Oceanol Acta 24:479–487

    Article  Google Scholar 

  • Malchow H, Petrovskii S, Medvinsky A (2002) Numerical study of plankton–fish dynamics in a spatially structured and noisy environment. Ecol Model 149:247–255

    Article  Google Scholar 

  • Malchow H, Hilker F, Petrovskii S (2004) Noise and productivity dependence of spatiotemporal pattern formation in a prey–predator system. Discret Contin Dyn Syst Ser B 4:705–711

    Article  MathSciNet  MATH  Google Scholar 

  • Mccauley E, Murdoch W (1987) Cyclic and stable populations: plankton as a paradigm. Am Nat 129(1):97–121

    Article  Google Scholar 

  • Meadows PS, Campbell JI (1988) An introduction to marine science. Blackie and Son Ltd, London

    Book  Google Scholar 

  • Medvinsky A, Petrovskii S, Tikhonova I, Malchow H, Li B (2002) Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev 44:311–370

    Article  MathSciNet  MATH  Google Scholar 

  • Mimura M, Murray JD (1978) On a diffusive prey–predator model which exhibit patchiness. J Theor Biol 75:249–262

    Article  MathSciNet  Google Scholar 

  • Pao CV (2002) Convergence of solutions of reaction–diffusion systems with time delays. Nonlinear Anal 48:349–362

    Article  MathSciNet  MATH  Google Scholar 

  • Pascual M (1993) Diffusion-induced chaos in a spatial predator–prey system. Proc Soc Lond Ser B 251:1–7

    Article  Google Scholar 

  • Ruan S (1993) Persistence and coexistence in zooplankton–phytoplankton–nutrient models with instantaneous nutrient recycling. J Math Biol 31:633–654

    Article  MathSciNet  MATH  Google Scholar 

  • Ruan S (1995a) Uniform persistence in reaction–diffusion plankton models. Rocky Mt J Math 25:459–470

  • Ruan S (1995b) The effect of delays on stability and persistence in plankton models. Nonlinear Anal 24:575–585

  • Ruan S (1998) Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J Appl Math 61:15–32

    Article  MathSciNet  MATH  Google Scholar 

  • Ruan S (2001) Oscillations in plankton models with nutrient recycling. J Theor Biol 208:15–26

    Article  MATH  Google Scholar 

  • Ruan S, Wei J (2003) On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn Contin Discret Impuls Syst Ser A Math Anal 10:863–874

    MathSciNet  MATH  Google Scholar 

  • Ruan S, Wolkowicz G (1995) Uniform persistence in plankton models with delayed nutrient recycling. Can Appl Math Q 3:219–235

    MathSciNet  MATH  Google Scholar 

  • Scheffer M (1991) Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62:271–282

    Article  Google Scholar 

  • Sherratt J, Eagen B, Lewis M (1997) Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos Trans R Soc Lond Ser B 352:21–38

    Article  Google Scholar 

  • Tikhonova I, Li B, Malchow H, Medvinsky A (2003) The impact of the phytoplankton growth rate on spatial and temporal dynamics of plankton communities in a heterogeneous environment. Biofizika 48:891–899

    Google Scholar 

  • Williamson P, Gribbin J (1991) How plankton change the climate? New Sci 16:48–52

    Google Scholar 

  • Wu J (1996) Theory and applications of partial functional–differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Yuan Y (2012) A coupled plankton system with instantaneous and delayed predation. J Biol Dyn 6:148–165

    Article  MathSciNet  Google Scholar 

  • Zuo W, Wei J (2011) Stability and Hopf bifurcation in a diffusive predator–prey system with delay effect. Nonlinear Anal Real World Appl 12:1998–2011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the anonymous referees careful reading and valuable comments. J.W. is partially supported by National Natural Science Foundation of China (No. 11371111), Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110044). J.Z. is partially supported by Natural Science Foundation of Heilongjiang Province of China (No. A201422), Natural Science Foundation of Shandong Province of China (No. ZR2015AQ005) and Program for Young Teachers Scientific Research in Qiqihar University (No. 2012k-M28). J.P.T. is partially supported by National Science Foundation of US (DMS-1446139) and National Natural Science Foundation of China (No. 11371048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tian, J.P. & Wei, J. Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay. Bull Math Biol 78, 381–412 (2016). https://doi.org/10.1007/s11538-016-0147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0147-3

Keywords

Navigation