Skip to main content

Advertisement

Log in

Zoonotic Transmission of Waterborne Disease: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Possums are native Australian marsupials, here assumed to be of Trichosurus vulpecula species.

  2. This approach was used because of the lack of reliable estimates of \(\gamma _\mathrm{H}\) and \(\beta _\mathrm{H}\) in the literature. Estimates of the duration of G. lamblia infection in humans only describe the duration of symptoms (Gibney et al. 2014; Rendtorff 1954; Robertson et al. 2010), not infectiousness as defined in this paper, and vary substantially from 2 to 60 days (Gibney et al. 2014; Nash et al. 1987; Nygård et al. 2006).

References

  • Abbasi T, Abbasi S (2011) Sources of pollution in rooftop rainwater harvesting systems and their control. Crit Rev Environ Sci Technol 41(23):2097–2167

    Article  Google Scholar 

  • Ahmed W, Hodgers L, Sidhu J, Toze S (2012) Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia. Appl Environ Microbiol 78(1):219–226

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Asher AJ, Holt DC, Andrews RM, Power ML (2014) Distribution of Giardia duodenalis assemblages A and B among children living in a remote Indigenous community of the Northern Territory, Australia. PLoS One 9(11):e112,058. doi:10.1371/journal.pone.0112058

    Article  Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004–2010. Water Res 45(20):6603–6614

    Article  Google Scholar 

  • Bingham A, Jarroll E, Meyer E, Radulescu S (1979) Giardia spp.: physical factors of excystation in vitro, and excystation vs eosin exclusion as determinants of viability. Exp Parasitol 47:284–291

    Article  Google Scholar 

  • Borchard P, Wright IA, Eldridge DJ (2010) Wombats and domestic livestock as potential vectors of Cryptosporidium and Giardia in an agricultural riparian area. Aust J Zool 58(3):150–153

    Article  Google Scholar 

  • Caccío SM, Thompson RA, McLauchlin J, Smith HV (2005) Unravelling Cryptospiridium and Giardia epidemiology. Trends Parasitol 21(9):430–437

    Article  Google Scholar 

  • Casman EA, Fischhoff B, Palmgren C, Small MJ, Wu F (2000) An integrated risk model of a drinking-water-borne cryptosporidiosis outbreak. Risk Anal 20(4):495–512

    Article  Google Scholar 

  • Chalmers R, Smith R, Elwin K, Clifton-Hadley F, Giles M (2011) Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004–2006. Epidemiol Infect 139(05):700–712

    Article  Google Scholar 

  • Chick SE, Soorpanth S, Koopman JS, Boutin BK (2002) Inferring infection transmission parameters that influence water treatment decisions. INSEAD working paper series 2002/108/TM/CMER/HMI, The Centre for the Management of Environmental Resources, Fontainebleu, France

  • Clancy D, Mendy ST (2011) Approximating the quasi-stationary distribution of the SIS model for endemic infection. Methodol Comput Appl Probab 13(3):603–618

    Article  MathSciNet  MATH  Google Scholar 

  • Dale K, Kirk M, Sinclair M, Hall R, Leder K (2010) Reported waterborne outbreaks of gastrointestinal disease in Australia are predominantly associated with recreational exposure. Aust N Z J Public Health 34(5):527–530

    Article  Google Scholar 

  • DeRegnier D, Cole L, Schupp D, Erlandsen S (1989) Viability of Giardia cysts suspended in lake, river and tap water. Appl Environ Microbiol 55(5):1223–1229

    Google Scholar 

  • Desai NT, Sarkar R, Kang G (2012) Cryptosporidiosis: an under-recognized public health problem. Trop Parasitol 2(2):91–98

    Article  Google Scholar 

  • Eisenberg JN, Brookhart MA, Rice G, Brown M, Colford JMJ (2002) Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect 110(8):783–790

    Article  Google Scholar 

  • Eisenberg JN, Lei X, Hubbard AH, Brookhart MA, Colford JMJ (2004) The role of disease transmission and conferred immunity in outbreaks: analysis of the 1993 Cryptospiridium outbreak in Milwaukee, Wisconsin. Am J Epidemiol 161(1):62–72

    Article  Google Scholar 

  • Esch KJ, Petersen CA (2013) Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev 26(1):58–85

    Article  Google Scholar 

  • Fayer R, Santín M, Trout JM, Greiner E (2006) Prevalence of species and genotypes of cryptosporidium found in 1–2-year-old dairy cattle in the eastern united states. Vet Parasitol 135(2):105–112

    Article  Google Scholar 

  • Fayer R, Santin M, Trout JM (2007) Prevalence of Cryptosporidium species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Vet Parasitol 145(3):260–266

    Article  Google Scholar 

  • Fayer R, Santín M, Macarisin D (2010) Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol 172(1):23–32

    Article  Google Scholar 

  • Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24(1):110–140

    Article  Google Scholar 

  • Fletcher SM, Stark D, Harkness J, Ellis J (2012) Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 25(3):420–449

    Article  Google Scholar 

  • Fletcher S, Caprarelli G, Merif J, Andresen D, Van Hal S, Stark D, Ellis J (2014) Epidemiology and geographical distribution of enteric protozoan infections in Sydney, Australia. J Public Health Res 3(298):83–91

    Google Scholar 

  • Gibney KB, O’Toole J, Sinclair M, Leder K (2014) Disease burden of selected gastrointestinal pathogens in Australia, 2010. Int J Infect Dis 28:e176–e185. doi:10.1016/j.ijid.2014.08.006

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Hunter PR, Thompson RA (2005) The zoonotic transmission of Giardia and Cryptospiridium. Int J Parasitol 35:1181–1190

    Article  Google Scholar 

  • Keeling MJ, Rohani P (2007) Modelling infectious diseases in humans and animals. Princeton University Press, Princeton

    Google Scholar 

  • Kirk M, Ford L, Glass K, Hall G (2014) Foodborne illness, Australia, circa 2000 and circa 2010. Emerg Infect Dis 20(11):1857–1864

    Article  Google Scholar 

  • Kline K, McCarthy J, Pearson M, Loukas A, Hotez P (2013) Neglected tropical diseases of oceania: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis 7:e1755. doi:10.1371/journal.pntd.0001755

    Article  Google Scholar 

  • Lal A, Baker MG, Hales S, French NP (2013) Potential effects of global environmental changes on Cryptosporidiosis and Giardiasis transmission. Trends Parasitol 29(2):83–90

    Article  Google Scholar 

  • Lasek-Nesselquist E, Welch D, Thompson RA, Steuart R, Sogin M (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518

    Article  Google Scholar 

  • Li S, Eisenberg JN, Spicknall IH, Koopman JS (2009) Dynamics and control of infections transmitted from person to person through the environment. Am J Epidemiol 170(2):257–265

    Article  Google Scholar 

  • Lye DJ (2002) Health risks associated with consumption of untreated water from household roof catchment systems. J Am Water Resour Assoc 38(5):1301–1306

    Article  Google Scholar 

  • McBride G, Stott R, Miller W, Bambric D, Wuertz S (2013) Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res 47:5282–5297

    Article  Google Scholar 

  • McBride G, Tait A, Slaney D (2014) Projected changes in reported Campylobacteriosis and Cryptosporidiosis rates as a function of climate change: a New Zealand study. Stoch Env Res Risk Assess 28:2133–2147

    Article  Google Scholar 

  • McKenna P (2009) An updated checklist of helminth and protozoan parasites of terrestrial mammals in New Zealand. N Z J Zool 36(2):89–113

    Article  Google Scholar 

  • Mota A, Mena K, Soto-Beltran M, Tarwater P, Chaidez C (2009) Risk assessment of Cryptosporidium and Giardia in water irrigating fresh produce in Mexico. J Food Prot 72:2184–2188

    Google Scholar 

  • Nash TE, Herrington D, Losonsky G, Levine M (1987) Experimental human infections with Giardia lamblia. J Infect Dis 156(6):974–984

    Article  Google Scholar 

  • Nasser A, Vaizel-Ohayon D, Aharoni A, Revhun M (2012) Prevalence and fate of Giardia cysts in wastewater treatment plants. J Appl Microbiol 113(3):477–484

    Article  Google Scholar 

  • Newman RD, Moore SR, Lima AA, Nataro JP, Guerrant RL, Sears CL (2001) A longitudinal study of Giardia lamblia infection in north-east Brazilian children. Trop Med Int Health 6(8):624–634

    Article  Google Scholar 

  • Nygård K, Schimmer B, Søbstad Ø, Walde A, Tveit I, Langeland N, Hausken T, Aavitsland P (2006) A large community outbreak of waterborne giardiasis—delayed detection in a non-endemic urban area. BMC Public Health 6(1):141

    Article  Google Scholar 

  • Quilliam R, Cross P, Williams AP, Edwards-Jones G, Salmon RL, Rigby D, Chalmers R, Thomas DR, Jones DL (2013) Subclinical infection and asymptomatic carriage of gastrointestinal zoonoses: occupational exposure, environmental pathways, and the anonymous spread of disease. Epidemiol Infect 141(10):2011–2021

    Article  Google Scholar 

  • Razzolini M, Weir M, Matte M, Matte G, Fernandes L, Rose J (2011) Risk of Giardia infection for drinking water and bathing in a peri-urban area in São Paulo, Brazil. Int J Environ Health Res 21:221–234

    Article  Google Scholar 

  • Read C, Walters J, Robertson ID, Thompson RA (2002) Correlation between genotype of Giardia duodenalis and diarrhoea. Int J Parasitol 32:229–231

    Article  Google Scholar 

  • Rendtorff R (1954) The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am J Hyg 59:209–220

    Google Scholar 

  • Robertson L, Hanevik K, Escobedo A, Morch K, Langeland N (2010) Giardiasis? Why do the symptoms sometimes never stop? Trends Parasitol 26(2):75–82

    Article  Google Scholar 

  • Rose J, Haas C, Regli S (1991) Risk assessment and the control of waterborne Giardiasis. Am J Public Health 81:709–713

    Article  Google Scholar 

  • Savioli L, Smith H, Thompson A (2006) Giardia and Cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol 22(5):203–208

    Article  Google Scholar 

  • Solaymani-Mohammadi S, Singer SM (2010) Giardia duodenalis: the double-edged sword of immune responses in giardiasis. Exp Parasitiol 126(3):292–297

    Article  Google Scholar 

  • Swaffer BA, Vial HM, King BJ, Daly R, Frizenschaf J, Monis PT (2014) Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment. Water Res 67:310–320

    Article  Google Scholar 

  • Thompson R, Smith A (2011) Zoonotic enteric protozoa. Vet Parasitol 182:70–78

    Article  Google Scholar 

  • Tuite AR, Tien J, Eisenberg M, Earn DJ, Ma J, Fisman DN (2011) Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann Intern Med 154(9):593–601

    Article  Google Scholar 

  • Tysnes KR, Skancke E, Robertson LJ (2014) Subclinical Giardia in dogs: a veterinary conundrum relevant to human infection. Trends Parasitol 30(11):520–527

    Article  Google Scholar 

  • Waldron L, Dimeski B, Beggs P, Ferrari B, Power M (2011) Molecular epidemiology, spatiotemporal analysis, and ecology of sporadic human Cryptosporidiosis in Australia. Appl Environ Microbiol 77(21):7757–7765

    Article  Google Scholar 

  • Westrell T, Schönning C, Stenström T, Ashbolt N (2004) QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage treatment reuse. Water Sci Technol 50:23–30

    Google Scholar 

  • Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol 52(3):309–323

    Article  MathSciNet  Google Scholar 

  • Xiao G, Qiu Z, Qi J, Chen J, Liu F, Wenyi L, Luo J, Shu W (2013) Occurrence and potential health risk of Cryptosporidium and Giardia in the Three Gorges Reservoir, China. Water Res 47:2431–2455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward K. Waters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waters, E.K., Hamilton, A.J., Sidhu, H.S. et al. Zoonotic Transmission of Waterborne Disease: A Mathematical Model. Bull Math Biol 78, 169–183 (2016). https://doi.org/10.1007/s11538-015-0136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0136-y

Keywords

Mathematics Subject Classification

Navigation