Skip to main content

Advertisement

Log in

Short- and Long-Term Optimal Control of a Mathematical Model for HIV Infection of \(CD4^{+}T\) Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The main goal of this study was to develop a theoretical short- and long-term optimal control treatment of HIV infection of \(CD4^{+}T\) cells. The aim of the mathematical model used herein is to make the free HIV virus particles in the blood decrease, while administering a treatment that is less toxic to patients. Pontryagin’s classical control theory is applied to a mathematical model of HIV infection of \(CD4^{+}T\) cells characterized by a system of nonlinear differential equations with the following unknown functions: the concentration of susceptible \(CD4^{+}T\) cells, \(CD4^{+}T\) cells infected by the HIV viruses and free HIV virus particles in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  • Adams BM, Banks HT, Davidian M, Kwon H-D, Tran HT, Wynne SN, Rosenberg ES (2005) HIV dynamics: modeling, data analysis, and optimal treatment protocols. J Comput Appl Math 184:10–49

    Article  MATH  MathSciNet  Google Scholar 

  • Borz DM, Nelson PW (2006) Model selection and mixed-effects modeling of HIV infection dynamics. Bull Math Biol 68(8):2005–2025

    Article  MathSciNet  Google Scholar 

  • Culshaw R, Ruan S, Spiteri R (2004) Optimal HIV treatment by maximizing immune response. J Math Biol 48(5):545–562

    Article  MATH  MathSciNet  Google Scholar 

  • DiMascio M, Ribeiro RM, Markowitz M, Ho DD, Perelson AS (2004) Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy. Math Biosci 188(1–2):47–62

    Article  MathSciNet  Google Scholar 

  • Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 32:1–12

    MathSciNet  Google Scholar 

  • Hadjiandreou MM, Conejeros R, Wilson DI (2009) Long-term HIV dynamics subject to continuous therapy and structured treatment. Chem Eng Sci 64:1600–1617

    Article  Google Scholar 

  • Jang T, Kwon H-D, Lee J (2011) Free terminal time optimal control problem of an HIV model based on a conjugate gradient method. Bull Math Biol 73:2408–2429

    Article  MathSciNet  Google Scholar 

  • Joshi HR (2002) Optimal control of an HIV immunology model. Optim Control Appl Methods 23:199–213

    Article  MATH  Google Scholar 

  • Karrakchou J, Rachik M, Gourari S (2006) Optimal control and infectiology: application to an HIV/AIDS model. Appl Math Comput 177:806–818

    MathSciNet  Google Scholar 

  • Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35:775–792

    Article  MATH  MathSciNet  Google Scholar 

  • Kwon H-D, Lee J, Yang S-D (2012) Optimal control of an age-structured model of HIV infection. Appl Math Comput 219:2766–2779

    Article  MATH  MathSciNet  Google Scholar 

  • Merdan M, Gokdogan A, Yildirim A (2011) On the numerical solution of the model for HIV infection of \(CD4^{+}T\) cells. Comput Math Appl 62:118–123

    Article  MATH  MathSciNet  Google Scholar 

  • Morgan D, Mahe C, Okongo B, Lubega R, Whitworth JA (2002) HIV-1 infection in rural Africa: Is there a difference in median time to aids and survival compared with that in industrialized countries? AIDS 16:597–632

    Article  Google Scholar 

  • Orellana JM (2011) Optimal drug scheduling for HIV therapy efficiency improvement. Biomed Signal Process Control 6:379–386

    Article  Google Scholar 

  • Perelson AS, Kirschner DE, Boer RD (1993) Dynamics of HIV infection \(CD4^{+}T\) cells. Math Biosci 114:81–125

    Article  MATH  Google Scholar 

  • Perelson AS, Nelson PW (1998) Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev 41:3–44

    Article  MathSciNet  Google Scholar 

  • Perera N (2003) Deterministic and stochastic models of virus dynamics. Ph.D. Thesis, Texas Tech University

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, New Jersey

    MATH  Google Scholar 

  • Roshanfekr M, Farahi MH, Rahbarian R (2014) A different approach of optimal control on an HIV immunology model. Ain Shams Eng J 5:213–219

    Article  Google Scholar 

  • Stengel RF (2008) Mutation and control of the human immunodeficiency virus. Math Biosci 213:93–102

    Article  MATH  MathSciNet  Google Scholar 

  • Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of \(CD4^{+}T\) cells. Math Biosci 200:44–57

    Article  MATH  MathSciNet  Google Scholar 

  • Wodarz D, Hamer DH (2007) Infection dynamics in HIV-specific CD4 T cells: Does a CD4 T cell boost benefit the host or the virus? Math Biosci 209:14–29

    Article  MATH  MathSciNet  Google Scholar 

  • Yuzbasi S (2012) A numerical approach to solve the model for HIV infection of \(CD4^{+}T\) cells. Appl Math Model 36:5876–5890

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Liang Y, Wu J (2014) An optimal strategy for HIV multitherapy. J Comput Appl Math 263:326–337

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for the constructive feedback provided during the reviewing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Croicu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croicu, AM. Short- and Long-Term Optimal Control of a Mathematical Model for HIV Infection of \(CD4^{+}T\) Cells. Bull Math Biol 77, 2035–2071 (2015). https://doi.org/10.1007/s11538-015-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0114-4

Keywords

Navigation