Skip to main content
Log in

Mathematical Model for MRSA Nasal Carriage

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An interesting biological phenomenon that is a factor for the spread of antibiotic-resistant strains, such as MRSA, is human nasal carriage. Here, we evaluate several biological hypotheses for this problem in an effort to better understand and narrow the scope of the dominant factors that allow these bacteria to persist in otherwise healthy individuals. First, we set up and analyze a simple PDE model created to generally mimic the interactions of the microbes and nasal immune response. This includes looking at different types of diffusion and chemotaxis terms as well as different boundary conditions. Then, using sensitivity analysis, we walk through several biological hypotheses and compare to the model’s results looking for persistent infection scenarios indicated by the model’s bacteria component surviving over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agnew J, Pavia D, Lopez-Vidriero M, Clarke S (1986) Mucus clearance from peripheral airways. Eur J Respir Dis Suppl 153:150–158

    Google Scholar 

  • Archer NK, Harro JM, Shirtliff ME (2013) Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect Immun 81(6):2070–2075

    Article  Google Scholar 

  • Blake J (1973) Mucus flows. Math Biosci 17(3):301–313

    Article  Google Scholar 

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission—an HIV model as an example. Int Stat Rev 62(2):229–243

    Article  MATH  Google Scholar 

  • Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74(6):3415–3426

    Article  Google Scholar 

  • Brandwood A, Noble KR, Schindhelm K (1992) Phagocytosis of carbon particles by macrophages in vitro. Biomaterials 13(9):646–648

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2013) Antibiotic resistance threats in the united states, 2013. Report. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29(6):339–346

    Article  Google Scholar 

  • Cogan N (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70(3):800–819

    Article  MATH  MathSciNet  Google Scholar 

  • Cogan N, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166

    Article  MATH  Google Scholar 

  • Coxon A, Tang T, Mayadas TN (1999) Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo: a role for granulocyte/macrophage colony-stimulating factor. J Exp Med 190(7):923–933

    Article  Google Scholar 

  • Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63(1):95–116

    Article  Google Scholar 

  • Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104

    Article  Google Scholar 

  • Eberl H, van Loosdrecht M, Morgenroth E, Noguera D, Perez J, Picioreanu C, Rittmann BE, Schwarz A, Wanner O (2004) Modelling a spatially heterogeneous biofilm and the bulk fluid: selected results from benchmark problem 2(bm 2). Water Sci Technol 49(11–12):155–162

    Google Scholar 

  • Eberl HJ, Sudarsan R (2008) Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J Theor Biol 253(4):788–807

    Article  MathSciNet  Google Scholar 

  • Edelson PJ, Zwiebel R, Cohn ZA (1975) Pinocytic rate of activated macrophages. J Exp Med 142(5):1150–1164

    Article  Google Scholar 

  • Eriksen NHR, Espersen F, Rosdahl VT, Jensen K (1995) Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol Infect 115(1):51–60

    Article  Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor Biol Med Model 8(8):1–29

    Google Scholar 

  • Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34(10):1865–1868

    Article  Google Scholar 

  • Gonzalez-Zorn B, Senna JPM, Fiette L, Shorte S, Testard A, Chignard M, Courvalin P, Grillot-Courvalin C (2005) Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice. Infect Immun 73(3):1847–1851

    Article  Google Scholar 

  • Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G (2012) New insights into methicillin-resistant Staphylococcus aureus (mrsa) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39(2):96–104

    Article  Google Scholar 

  • Harro JM, Peters BM, O’May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME (2010) Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. Fems Immunol Med Microbiol 59(3):306–323

    Google Scholar 

  • Holtfreter S, Roschack K, Eichler P, Eske K, Holtfreter B, Kohler C, Engelmann S, Hecker M, Greinacher A, Broker BM (2006) Staphylococcus aureus carriers neutralize superantigens by antibodies specific for their colonizing strain: a potential explanation for their improved prognosis in severe sepsis. J Infect Dis 193(9):1275–1278

    Article  Google Scholar 

  • Jarrett AM, Cogan NG, Shirtliff ME (2015) Modelling the interaction between the host immune response, bacterial dynamics, and inflammatory damage in comparison to immunomodulation and vaccination experiments. Math Med Biol 32(3):285–306. doi:10.1093/imammb/dqu008

  • Kacica M, McDonald LC (2004) Brief report: vancomycin-resistant Staphylococcus aureus. Jama J Am Med Assoc 292(6):679–680

    Article  Google Scholar 

  • Kiser KB, Cantey-Kiser JM, Lee JC (1999) Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect Immun 67(10):5001–5006

    Google Scholar 

  • Klapper I, Dockery J (2002) Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869

    Article  MathSciNet  Google Scholar 

  • Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52(2):221–265

    Article  MATH  MathSciNet  Google Scholar 

  • Krismer B, Peschel A (2011) Does Staphylococcus aureus nasal colonization involve biofilm formation? Future Microbiol 6(5):489–493

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MathSciNet  Google Scholar 

  • Matsui H, Ito T, Ohnishi SI (1983) Phagocytosis by macrophages 3. Effects of heat-labile opsonin and poly(l-lysine). J Cell Sci 59:133–143

    Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MATH  MathSciNet  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Bact Biofilms 322:207–228

    Article  Google Scholar 

  • Peacock SJ, de Silva I, Lowy FD (2001) What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9(12):605–610

    Article  Google Scholar 

  • Prabhakara R, Harro JM, Leid JG, Keegan AD, Prior ML, Shirtliff ME (2011) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79(12):5010–5018

    Article  Google Scholar 

  • Proctor RA, Kahl B, von Eiff C, Vaudaux P, Lew DP, Peters G (1998) Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27(Suppl 1):S68–74

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145:280–297

    Article  MATH  Google Scholar 

  • Sanford BA, Thomas VL, Ramsay MA (1989) Binding of staphylococci to mucus in vivo and in vitro. Infect Immun 57(12):3735–3742

    Google Scholar 

  • Shirtliff ME, Calhoun JH, Mader JT (2001) Comparative evaluation of oral levofloxacin and parenteral nafcillin in the treatment of experimental methicillin-susceptible Staphylococcus aureus osteomyelitis in rabbits. J Antimicrob Chemother 48(2):253–258

    Article  Google Scholar 

  • Shirtliff ME, Calhoun JH, Mader JT (2002) Experimental osteomyelitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Relat Res 401:239–247

    Article  Google Scholar 

  • Shuter J, Hatcher VB, Lowy FD (1996) Staphylococcus aureus binding to human nasal mucin. Infect Immun 64(1):310–318

    Google Scholar 

  • Spector WS (1956) Cell division frequency: microorganisms. Saunders, Philadelphia

    Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491

    Article  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  Google Scholar 

  • Thien-Fah Maha C, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  Google Scholar 

  • Verbrugh HA (2009) Colonization with Staphylococcus aureus and the role of colonization in causing infection. In: Crossley KB, Jefferson KK, Archer GL, Folwer VG (eds) Staphylococci in human disease, 2nd edn. Blackwell Publishing Ltd, p 259

  • von Eiff C, Becker K, Machka K, Stammer H, Peters G, Study G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344(1):11–16

    Article  Google Scholar 

  • Weidenmaier C, Goerke C, Wolz C (2012) Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20(5):243–250

    Article  Google Scholar 

  • Wertheim HFL, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans J, van Keulen PHJ, Vandenbroucke-Grauls C, Meester MHM, Verbrugh HA (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364(9435):703–705

    Article  Google Scholar 

  • Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762

    Article  Google Scholar 

  • Williams RE (1963) Healthy carriage of Staphylococcus aureus—its prevalence and importance. Bacteriol Rev 27(1):56–71

    Google Scholar 

  • Zhang T, Cogan N, Wang Q (2008) Phase field models for biofilms. II. 2-d numerical simulations of biofilm–flow interaction. Commun Comput Phys 4(1):72–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Jarrett.

Appendix

Appendix

See Tables 2, 3, 4, 5 and Figs. 14, 15.

Table 2 Parameter descriptions and values: The model variables quantify the response of each component rather than give a quantitative count due to the fact that several of the components in the biological system are combined
Table 3 PRCC results for constant diffusion
Table 4 PRCC results for non-constant diffusion
Table 5 PRCC results for non-constant diffusion over space
Fig. 14
figure 14

Results for the full model testing changes in the mucus parameters \(\textit{DB}\), \(\textit{DN}\), and \(\xi \). When \(\textit{DB}\) and \(\textit{DN}\) are decreased, the infection is able to remain for a longer period of time, but \(\textit{DB}\) has a far more significant effect. When \(\xi \) is increased, it also gives the infection an advantage to survive. a B results for decreased \(\textit{DB}=0.3\). b N results for decreased \(\textit{DB}=0.3\). c B results for decreased \(\textit{DN}=0.1\). d N results for decreased \(\textit{DN}=0.1\). e B results for increased \(\xi =0.22\). f N results for increased \(\xi =0.22\). g B results for increased \(\xi =0.4\). h N results for increased \(\xi =0.4\) (Color figure online)

Fig. 15
figure 15

Graphs are the PRCC results from the tables above where the black dashed lines represent the value 0.25 for possible sensitivity and the red dashed lines represent the cutoff for most significance (value 0.45). a PRCC results for constant diffusion and constant N boundary condition. b PRCC results for constant diffusion and non-constant N boundary condition. c PRCC results for non-constant diffusion in time and constant N boundary condition. d PRCC results for non-constant diffusion in time and non-constant N boundary condition. e PRCC results for non-constant diffusion in time and space and constant N boundary condition. f PRCC results for non-constant diffusion in time and space and non-constant N boundary condition (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrett, A.M., Cogan, N.G. & Hussaini, M.Y. Mathematical Model for MRSA Nasal Carriage. Bull Math Biol 77, 1787–1812 (2015). https://doi.org/10.1007/s11538-015-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0104-6

Keywords

Navigation