Skip to main content

Advertisement

Log in

A Framework for Inferring Unobserved Multistrain Epidemic Subpopulations Using Synchronization Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A new method is proposed to infer unobserved epidemic subpopulations by exploiting the synchronization properties of multistrain epidemic models. A model for dengue fever is driven by simulated data from secondary infective populations. Primary infective populations in the driven system synchronize to the correct values from the driver system. Most hospital cases of dengue are secondary infections, so this method provides a way to deduce unobserved primary infection levels. We derive center manifold equations that relate the driven system to the driver system and thus motivate the use of synchronization to predict unobserved primary infectives. Synchronization stability between primary and secondary infections is demonstrated through numerical measurements of conditional Lyapunov exponents and through time series simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  • Bianco S, Shaw LB, Schwartz IB (2009) Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19:043123

    Article  Google Scholar 

  • Billings L, Schwartz IB, Shaw LB, McCrary M, Burke DS, Cummings DAT (2007) Instabilities in multiserotype disease models with antibody-dependent enhancement. J Theor Biol 246:18

    Article  MathSciNet  Google Scholar 

  • Bjornstad ON, Finkenstadt BF, Grenfell BT (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecolo Monogr 72(2):169–184

    Article  Google Scholar 

  • Blarer A, Doebeli M (1999) Resonance effects and outbreaks in ecological time series. Ecol Lett 2:167–177

    Article  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep Rev Sect Phys Lett 366:1–101

    MathSciNet  MATH  Google Scholar 

  • Carr J (1981) Applications of centre manifold theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chen S, Lü J (2002) Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 299:353

    Article  MathSciNet  MATH  Google Scholar 

  • Chicone C, Latushkin Y (1997) Center manifolds for infinite dimensional nonautonomous differential equations. J Differ Equ 141:356–399

    Article  MathSciNet  MATH  Google Scholar 

  • Cummings DAT, Schwartz IB, Billings L, Shaw LB, Burke DS (2005) Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Nat Acad Sci USA 102(42):15259–15264

    Article  Google Scholar 

  • Dedieu H, Ogorzalek MJ (1997) Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans Circuits Syst I Fundam Theory Appl 44:948

    Article  MathSciNet  Google Scholar 

  • Duan J, Lu K, Schmalfuss B (2003) Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31(4):2109–2135

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson NM, Donnelly CA, Anderson RM (1999) Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc Lond B Biol Sci 354:757–768

    Article  Google Scholar 

  • Forgoston E, Billings L, Schwartz IB (2009) Accurate noise projection for reduced stochastic epidemic models. Chaos 19:043110

    Article  MathSciNet  Google Scholar 

  • Forgoston E, Schwartz IB (2013) Predicting unobserved exposures from seasonal epidemic data. Bull Math Biol 75:1450

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson GJ, Kleczkowski A, Gilligan CA (2004) Bayesian analysis of botanical epidemics using stochastic compartmental models. PNAS 101:12120

    Article  Google Scholar 

  • Huang L, Lin L (2013) Parameter identification and synchronization of uncertain chaotic systems based on sliding mode observer. Mathe Probl Eng 2013:859304

    MathSciNet  Google Scholar 

  • Lekone PE, Finkenstädt BF (2006) Statistical inference in a stochastic epidemic seir model with control intervention: ebola as a case study. Biometrics 62:1170

    Article  MathSciNet  MATH  Google Scholar 

  • Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci USA 105:2238–2243

    Article  Google Scholar 

  • Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW (2003) Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68:191–202

    Google Scholar 

  • Parlitz U, Junge L, Kocarev L (1996) Synchronization-based parameter estimation from time series. Phys Rev E 54:6253

    Article  Google Scholar 

  • Rigau-Perez J, Clark G, Gubler D, Reiter P, Sanders E, Vancevorndam A (1998) Dengue and dengue hemmorrhagic fever. Lancet 352:971–977

    Article  Google Scholar 

  • Roberts AJ (2008) Normal form transforms separate slow and fast modes in stochastic dynamical systems. Phys A 387(1):12–38

    Article  MathSciNet  Google Scholar 

  • Schaffer WM, Kendall BE, Tidd CW, Olsen LF (1993) Transient periodicity and episodic predictability in biological dynamics. IMA J Math Appl Med 10:227–247

    Article  MATH  Google Scholar 

  • Schwartz I, Smith H (1983) Infinite subharmonic bifurcations in an SEIR epidemic model. J Math Biol 18:233–253

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz IB, Shaw LB, Cummings D, Billings L, McCrary M, Burke D (2005) Chaotic desynchronization of multi-strain diseases. Phys Rev E 72:066201

    Article  Google Scholar 

  • Shaw LB, Billings L, Schwartz IB (2007) Using dimension reduction to improve outbreak predictability of multistrain diseases. J Math Biol 55:1–19

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

EF is supported by Award Number CMMI-1233397 from the National Science Foundation. LBS is supported by Award Number R01GM090204 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of General Medical Sciences or the National Institutes of Health. IBS is supported by the NRL Base Research Program contract number N0001414WX00023 and by the Office of Naval Research contract number N0001414WX20610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Forgoston.

Appendices

Appendix 1: Shifted, Rescaled and Augmented System of Equations

The governing equations for the two-serotype multistrain disease model and the subsystem driven by secondary infectious individuals are given by Eqs. (4a)–(5c). We define a new set of variables, \(\bar{s}\), \(\bar{x}_i\), \(\bar{r}_i\), \(\bar{x}_{ij}\), \(\bar{s}_d\) and \(\bar{x}_{id}\) for all ij as \(\bar{s}(t)=s(t)-s_0\), \(\bar{x}_i(t)=x_i(t)-x_{i,0}\), \(\bar{r}_i(t)=r(t)-r_{i,0}\), \(\bar{x}_{ij}(t)=x_{ij}(t)-x_{ij,0}\), \(\bar{s}_d(t)=s_d(t)-s_{d,0}\), \(\bar{x}_{id}(t)=x_{id}(t)-x_{id,0}\), and these new variables are substituted into Eqs. (4a)–(5c).

Then, treating \(\mu \) as a small parameter, we rescale time by letting \(t=\mu \tau \). We may then introduce the following rescaled parameters: \(\beta =\beta _0/\mu \) and \(\sigma =\sigma _0/\mu \), where \(\beta _0\) and \(\sigma _0\) are \(\mathcal {O}(1)\). The inclusion of the parameter \(\mu \) as a new state variable means that the terms in our rescaled system which contain \(\mu \) are now nonlinear terms. Furthermore, the system is augmented with the auxiliary equation \(\frac{d\mu }{d\tau }=0\). The addition of this auxiliary equation contributes an extra simple zero eigenvalue to the system and adds one new center direction that has trivial dynamics. The shifted, rescaled, and augmented system of equations is given as

$$\begin{aligned} \frac{d\bar{s}}{d\tau }= & {} \mu ^2 - \beta _0 \left( \bar{s}+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_1+\bar{x}_2+\phi \left( \bar{x}_{21}+\bar{x}_{12}\right) +\frac{\mu ^2(1+\phi )}{\sigma _0}\right) , \nonumber \\ \end{aligned}$$
(21a)
$$\begin{aligned} \frac{d\bar{x}_1}{d\tau }= & {} \beta _0\left( \bar{s}+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_1+\phi \bar{x}_{21}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_1+\frac{\mu ^2}{2\sigma _0}\right) , \nonumber \\\end{aligned}$$
(21b)
$$\begin{aligned} \frac{d\bar{x}_2}{d\tau }= & {} \beta _0\left( \bar{s}+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_2+\phi \bar{x}_{12}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_2+\frac{\mu ^2}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21c)
$$\begin{aligned} \frac{d\bar{r}_1}{d\tau }= & {} \sigma _0\left( \bar{x}_1+\frac{\mu ^2}{2\sigma _0}\right) -\beta _0\left( \bar{r}_1+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_2+\phi \bar{x}_{12}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21d)
$$\begin{aligned} \frac{d\bar{r}_2}{d\tau }= & {} \sigma _0\left( \bar{x}_2+\frac{\mu ^2}{2\sigma _0}\right) -\beta _0\left( \bar{r}_2+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_1+\phi \bar{x}_{21}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21e)
$$\begin{aligned} \frac{d\bar{x}_{21}}{d\tau }= & {} \beta _0\left( \bar{r}_2+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_1+\phi \bar{x}_{21}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_{21}+\frac{\mu ^2}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21f)
$$\begin{aligned} \frac{d\bar{x}_{12}}{d\tau }= & {} \beta _0\left( \bar{r}_1+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_2+\phi \bar{x}_{12}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_{12}+\frac{\mu ^2}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21g)
$$\begin{aligned} \frac{d\bar{s}_d}{d\tau }= & {} \mu ^2-\beta _0 \left( \bar{s}_d +\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_{1d}+\bar{x}_{2d}+\phi \left( \bar{x}_{21}+\bar{x}_{12}\right) +\frac{\mu ^2(1+\phi )}{\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21h)
$$\begin{aligned} \frac{d\bar{x}_{1d}}{d\tau }= & {} \beta _0\left( \bar{s}_d+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_{1d}+\phi \bar{x}_{21}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_{1d}+\frac{\mu ^2}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21i)
$$\begin{aligned} \frac{d\bar{x}_{2d}}{d\tau }= & {} \beta _0\left( \bar{s}_d+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( \bar{x}_{2d}+\phi \bar{x}_{12}+\frac{\mu ^2(1+\phi )}{2\sigma _0}\right) -\sigma _0\left( \bar{x}_{2d}+\frac{\mu ^2}{2\sigma _0}\right) ,\nonumber \\ \end{aligned}$$
(21j)
$$\begin{aligned} \frac{d\mu }{d\tau }= & {} 0, \end{aligned}$$
(21k)

where the endemic fixed point is now located at the origin.

Appendix 2: Definition of New Variables

Using the fact that \((\bar{s},\bar{x}_1,\bar{x}_2,\bar{r}_1,\bar{r}_2,\bar{x}_{21},\bar{x}_{12},\bar{s}_d,\bar{x}_{1d},\bar{x}_{2d})^T = \mathbf{P}\cdot \mathbf{W}^T\), where \(\mathbf{P}\) is given by Eq. (7) and \(\mathbf{W}=(W_1,W_2,W_3,W_4,W_5,W_6,W_7,W_8,W_9,W_{10})\), then the transformation matrix leads to the following definition of new variables, \(W_i\), \(i=1\ldots 10\):

$$\begin{aligned} W_1= & {} \frac{\bar{x}_{21}-\bar{x}_1}{1+\phi }, \quad W_2 = \frac{\bar{x}_{12}-\bar{x}_2}{1+\phi }, \quad W_3 = \frac{\bar{x}_{1d}+\bar{x}_{2d}-\bar{x}_1-\bar{x}_2}{\phi }, \quad W_4 = \bar{x}_{2d}-\bar{x}_2, \nonumber \\ W_5= & {} \bar{s}, \quad W_6 =\frac{\bar{x}_{1}+\phi \bar{x}_{21}}{1+\phi }, \quad W_7 = \frac{\bar{x}_{2}+\phi \bar{x}_{12}}{1+\phi }, \quad W_8=\frac{\phi \bar{r}_{1}+\phi \bar{x}_{1}+\bar{r}_1-\phi \bar{x}_{21}}{1+\phi },\nonumber \\ W_9= & {} \frac{\phi \bar{r}_{2}+\phi \bar{x}_{2}+\bar{r}_2-\phi \bar{x}_{12}}{1+\phi },\quad W_{10} = \frac{\phi \bar{s}_{d}-\bar{x}_{1d}-\bar{x}_{2d}+\bar{x}_{1}+\bar{x}_2}{\phi }. \end{aligned}$$
(22)

Appendix 3: Transformed Evolution Equations

The application of the transformation matrix \(\mathbf{P}\) given by Eqs. (7) to (21a)–(21j) leads to the following set of transformed evolution equations:

$$\begin{aligned} \frac{dW_1}{d\tau }= & {} \beta _0\left( W_6+\frac{\mu ^2}{2\sigma _0}\right) \left( W_9+\phi W_2-W_5\right) -\sigma _0 W_1 , \end{aligned}$$
(23a)
$$\begin{aligned} \frac{dW_2}{d\tau }= & {} \beta _0\left( W_7+\frac{\mu ^2}{2\sigma _0}\right) \left( W_8+\phi W_1-W_5\right) -\sigma _0 W_2 , \end{aligned}$$
(23b)
$$\begin{aligned} \frac{dW_3}{d\tau }= & {} W_3\left( \beta _0\left( W_3+W_{10}\right) -\frac{\sigma _0\phi }{1+\phi }\right) \nonumber \\&+\,\frac{\beta _0\left( 1+\phi \right) }{\phi }\left( W_6+W_7+\frac{\mu ^2}{\sigma _0}\right) \left( W_3+W_{10}-W_5\right) , \end{aligned}$$
(23c)
$$\begin{aligned} \frac{dW_4}{d\tau }= & {} \left( \beta _0\left( W_3+W_{10}\right) -\frac{\sigma _0\phi }{1+\phi }\right) W_4 \nonumber \\&+\,\beta _0\left( W_3+W_{10}-W_5\right) \left( \left( 1+\phi \right) W_7+\frac{\mu ^2\left( 1+\phi \right) }{2\sigma _0}\right) , \end{aligned}$$
(23d)
$$\begin{aligned} \frac{dW_5}{d\tau }= & {} \mu ^2-\beta _0\left( W_5+\frac{\sigma _0}{\beta _0 (1+\phi )}\right) \left( (1+\phi )\left( W_6+W_7+\frac{\mu ^2}{\sigma _0}\right) \right) , \end{aligned}$$
(23e)
$$\begin{aligned} \frac{dW_6}{d\tau }= & {} \beta _0\left( W_6+\frac{\mu ^2}{2\sigma _0}\right) \left( \phi ^2 W_2+\phi W_9+W_5\right) , \end{aligned}$$
(23f)
$$\begin{aligned} \frac{dW_7}{d\tau }= & {} \beta _0\left( W_7+\frac{\mu ^2}{2\sigma _0}\right) \left( \phi ^2 W_1+\phi W_8+W_5\right) , \end{aligned}$$
(23g)
$$\begin{aligned} \frac{dW_8}{d\tau }= & {} \left( W_6+\frac{\mu ^2}{2\sigma _0}\right) \left( \sigma _0+\beta _0\left( \phi W_5 -\phi W_9 -\phi ^2 W_2 \right) \right) \nonumber \\&-\,\left( 1+\phi \right) \beta _0\left( W_7 + \frac{\mu ^2}{2\sigma _0} \right) \left( \phi W_1 + W_8 + \frac{\sigma _0}{\beta _0\left( 1+\phi \right) } \right) , \end{aligned}$$
(23h)
$$\begin{aligned} \frac{dW_9}{d\tau }= & {} \left( W_7+\frac{\mu ^2}{2\sigma _0}\right) \left( \sigma _0+\beta _0\left( \phi W_5 -\phi W_8 -\phi ^2 W_1 \right) \right) \nonumber \\&-\,\left( 1+\phi \right) \beta _0\left( W_6 + \frac{\mu ^2}{2\sigma _0} \right) \left( \phi W_2 + W_9 + \frac{\sigma _0}{\beta _0\left( 1+\phi \right) } \right) , \end{aligned}$$
(23i)
$$\begin{aligned} \frac{dW_{10}}{d\tau }= & {} \mu ^2-\left( 1+\phi \right) \beta _0 W_3\left( W_3+W_{10}\right) \nonumber \\&+\, \frac{\left( 1+\phi \right) \beta _0}{\phi }\left( W_6+W_7+\frac{\mu ^2}{\sigma _0}\right) \nonumber \\&\left( W_5-\left( 1+\phi \right) \left( W_3+W_{10}\right) -\frac{\phi \sigma _0}{\beta _0\left( 1+\phi \right) }\right) , \end{aligned}$$
(23j)
$$\begin{aligned} \frac{d\mu }{d\tau }= & {} 0. \end{aligned}$$
(23k)

Appendix 4: Center Manifold Condition

Substitution of the center manifold functions \(W_i=h_i\) given by Eq. (12) into the transformed evolution equations given in “Appendix 3” leads to the following center manifold condition:

$$\begin{aligned}&\frac{\partial h_1}{\partial W_5}\frac{dW_5}{d\tau } + \frac{\partial h_1}{\partial W_6}\frac{dW_6}{d\tau } + \frac{\partial h_1}{\partial W_7}\frac{dW_7}{d\tau } + \frac{\partial h_1}{\partial W_8}\frac{dW_8}{d\tau } + \frac{\partial h_1}{\partial W_9}\frac{dW_9}{d\tau } + \frac{\partial h_1}{\partial W_{10}}\frac{dW_{10}}{d\tau } \nonumber \\&\quad =\beta _0\left( W_6+\frac{\mu ^2}{2\sigma _0}\right) \left( W_9+\phi h_2-W_5\right) -\sigma _0 h_1, \end{aligned}$$
(24a)
$$\begin{aligned}&\frac{\partial h_2}{\partial W_5}\frac{dW_5}{d\tau } + \frac{\partial h_2}{\partial W_6}\frac{dW_6}{d\tau } + \frac{\partial h_2}{\partial W_7}\frac{dW_7}{d\tau } + \frac{\partial h_2}{\partial W_8}\frac{dW_8}{d\tau } + \frac{\partial h_2}{\partial W_9}\frac{dW_9}{d\tau } + \frac{\partial h_2}{\partial W_{10}}\frac{dW_{10}}{d\tau } \nonumber \\&\quad =\beta _0\left( W_7+\frac{\mu ^2}{2\sigma _0}\right) \left( W_8+\phi h_1-W_5\right) -\sigma _0 h_2, \end{aligned}$$
(24b)
$$\begin{aligned}&\frac{\partial h_3}{\partial W_5}\frac{dW_5}{d\tau } + \frac{\partial h_3}{\partial W_6}\frac{dW_6}{d\tau } + \frac{\partial h_3}{\partial W_7}\frac{dW_7}{d\tau } + \frac{\partial h_3}{\partial W_8}\frac{dW_8}{d\tau } + \frac{\partial h_3}{\partial W_9}\frac{dW_9}{d\tau } + \frac{\partial h_3}{\partial W_{10}}\frac{dW_{10}}{d\tau } \nonumber \\&\quad =h_3\left( \beta _0\left( h_3+W_{10}\right) -\frac{\sigma _0\phi }{1+\phi }\right) \nonumber \\&\quad \quad +\,\frac{\beta _0\left( 1+\phi \right) }{\phi }\left( W_6+W_7+\frac{\mu ^2}{\sigma _0}\right) \left( h_3+W_{10}-W_5\right) , \end{aligned}$$
(24c)
$$\begin{aligned}&\frac{\partial h_4}{\partial W_5}\frac{dW_5}{d\tau } + \frac{\partial h_4}{\partial W_6}\frac{dW_6}{d\tau } + \frac{\partial h_4}{\partial W_7}\frac{dW_7}{d\tau } + \frac{\partial h_4}{\partial W_8}\frac{dW_8}{d\tau } + \frac{\partial h_4}{\partial W_9}\frac{dW_9}{d\tau } + \frac{\partial h_4}{\partial W_{10}}\frac{dW_{10}}{d\tau } \nonumber \\&\quad =\left( \beta _0\left( h_3+W_{10}\right) -\frac{\sigma _0\phi }{1+\phi }\right) h_4 \nonumber \\&\quad \quad +\,\beta _0\left( h_3+W_{10}-W_5\right) \left( \left( 1+\phi \right) W_7+\frac{\mu ^2\left( 1+\phi \right) }{2\sigma _0}\right) . \end{aligned}$$
(24d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forgoston, E., Shaw, L.B. & Schwartz, I.B. A Framework for Inferring Unobserved Multistrain Epidemic Subpopulations Using Synchronization Dynamics. Bull Math Biol 77, 1437–1455 (2015). https://doi.org/10.1007/s11538-015-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0091-7

Keywords

Navigation