Skip to main content
Log in

Understanding the Shape of Ant Craters: A Continuum Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The disposal of soil grains by ants, during excavation of their nest, results in the formation of axisymmetric craters around the nest entrance. We give a simple explanation for the shape of these biological constructs based on basic processes underlying grain transport and grain dropping. We propose that the tendency of an ant to drop a grain, in its next step, keeps increasing as it carries the grain farther away from the nest. Based on this hypothesis, a continuum mathematical model is developed to describe the soil dumping activity of ants, averaged over space and time. Consisting of a single, first-order differential equation, the model resembles that used to describe simultaneous convection and reaction of a chemical species, thus establishing a connection between ant craters and reacting flows. The model is shown to accurately describe the soil disposal data for two species of ants—M. barbarus and P. ambigua—using only two adjustable parameters- one less than previous empirical distributions. The characteristic single-hump shape of the crater is explained as follows: While the tendency to drop grains is greater at distances further away from the nest, the density of grain-bearing ants is highest close to the nest, thus most of the grains are dropped at an intermediate location and form a peak. The model predicts that steep craters with a sharp peak are always located closer to the nest entrance than craters which are more spread out; this new prediction is verified by data for M. barbarus and P. ambiguaants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aris R (1999) Mathematical modeling: a chemical engineer’s perspective. Academic Press, San Diego

  • Balakotaiah V, Dommeti SMS, Gupta N (1999) Bifurcation analysis of chemical reactors and reacting flows 9: 13–35 (1999). doi:10.1063/1.166377

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. TREE 12(5):188–193

    Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Franks NR, Rafelsberger O, Joly J-L, Blanco S (1998) A model for the emergence of pillars, walls and royal chambers in termite nests. Philos Trans R Soc B 353(1375):1561–1576

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence. Oxford University Press, New York

    MATH  Google Scholar 

  • Bonabeau E, Guerin S, Snyers D, Kuntz P, Theraulaz G (2000) Three-dimensional architectures grown by simple “stigmergic” agents. BioSystems 56:13–32

    Article  Google Scholar 

  • Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:61–76

    Article  Google Scholar 

  • Camazine S, Deneubourg J, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princton University Press, New Jersey

    Google Scholar 

  • Carroll KJ (2003) On the use and utility of the Weibull model in the analysis of survival data. Control Clin Trials 24:682–701. doi:10.1016/S0197-2456(03)00072-2

    Article  Google Scholar 

  • Cox MD, Blanchard GB (2000) Gaseous templates in ant nests. J Theor Biol 204:223–238. doi:10.1006/jtbi.2000.2010

    Article  Google Scholar 

  • Deneubourg J (1977) Application de l’ordre par fluctuations a la description de certaines étapes de la construction du nid chez les Termites. Insectes Sociaux 24(2):117–130

    Article  Google Scholar 

  • Detrain C, Deneubourg J (2006) Self-organized structures in a superorganism: do ants “behave” like molecules? Phys Life Rev 3:162–187. doi:10.1016/j.plrev.2006.07.001

    Article  Google Scholar 

  • Eftimie R (2012) Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J Math Biol 65:35–75. doi:10.1007/s00285-011-0452-2

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein JM (2007) Generative Social Science: Studies in Agent-Based Computational Modeling. Princton University Press, Princton

    Google Scholar 

  • Fogler HS (2005) Elements of Chemical Reaction Engineering, 4th edn. Prentice Hall, Massachusetts

    Google Scholar 

  • Franks NR, Britton NF, Sendova-Franks AB, Denny AJ, Soans EL, Brown AP, Cole RE, Havardi RJ, Griffiths CJ, Ellis SR (2004) Centrifugal waste disposal and the optimization of ant nest craters. Anim Behav67(5):965–973. doi:10.1016/j.anbehav.2004.01.003

  • Franks NR, Wilby A, Silverman BW, Tofts C (1992) Self-organizing nest construction in ants: sophisticated building by blind bulldozing. Anim Behav 44:357–375

    Article  Google Scholar 

  • Franks N, Deneubourg J (1997) Self-organizing nest construction in ants: individual worker behaviour and the nest’s dynamics. Anim Behav 54(4): 779–796. http://www.ncbi.nlm.nih.gov/pubmed/9344432

  • Heo J, Boes DC, Salas JD (2001) Regional flood frequency analysis based on a Weibull model: Part 1. Estimation and asymptotic variances. J Hydrol 242:157–170

    Article  Google Scholar 

  • Holcombe M, Adra S, Bicak M, Chin S, Coakley S, Graham AI et al (2012) Modelling complex biological systems using an agent-based approach. Integr Biol 4:53–64. doi:10.1039/c1ib00042j

    Article  Google Scholar 

  • Johnson BR (2009) Pattern formation on the combs of honeybees: increasing fitness by coupling self-organization with templates. Proc R Soc B 276:255–261. doi:10.1098/rspb.2008.0793

    Article  Google Scholar 

  • Jost C, Verret J, Casellas E, Gautrais J, Challet M, Lluc J, Blanco S, Clifton MJ, Theraulaz G (2007) The interplay between a self-organized process and an environmental template: corpse clustering under the influence of air currents in ants. J R Soc Interface 4:107–116. doi:10.1098/rsif.2006.0156

    Article  Google Scholar 

  • Lai C-D, Murthy DNP, Xie M (2006) Weibull distributions and their applications. In: Pham H (ed) Springer handbook of engineering statistics. Springer, London

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-Organization in Nonequilibrium Systems. Wiley, New York

    MATH  Google Scholar 

  • Robinson EJH, Holcombe M, Ratnieks FLW (2008) The organization of soil disposal by ants. Anim Behav 75(4):1389–1399. doi:10.1016/j.anbehav.2007.09.013

    Article  Google Scholar 

  • Røed K, Zhang T (2002) A note on the Weibull distribution and time aggregation bias. Appl Econ Lett 9:469–472. doi:10.1080/13504850110096340

    Article  Google Scholar 

  • Scholes SR, Sendova-Franks AB, Swift ST, Melhuish C (2006) Ants can sort their brood without a gaseous template. Behav Ecol Sociobiol 59:531–540. doi:10.1007/s00265-005-0078-8

    Article  Google Scholar 

  • Sendova-Franks AB, Scholes SR, Franks NR, Melhuish C (2004) Brood sorting by ants: two phases and differential diffusion. Anim Behav 68:1095–1106. doi:10.1016/j.anbehav.2004.02.013

    Article  Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behaviour. Philos Trans R Soc B 361:5–22. doi:10.1098/rstb.2005.1733

    Article  Google Scholar 

  • Tesfatsion L (2003) Agent-based computational economics? Modeling economies as complex adaptive systems. Inf Sci 149:263–269. doi:10.1016/S0020-0255(02)00280-3

    Article  Google Scholar 

  • Theraulaz G, Bonabeau E, Sauwens C, Deneubourg J, Lioni A, Libert F, Passera L, Sole R (2001) Model of droplet dynamics in the Argentine ant linepithema humile (Mayr). Bull Math Biol 63:1079–1093. doi:10.1006/bulm.2001.0260

    Article  Google Scholar 

  • Theraulaz G, Bonabeau E, Nicolis SC, Solé RV, Fourcassié V, Blanco S, Fournier R, Joly J-L, Fernández P, Grimal A, Dalle P, Deneubourg J-L (2002) Spatial patterns in ant colonies. Proc Natl Acad Sci USA 99(15):9645–9649. doi:10.1073/pnas.152302199

    Article  MATH  Google Scholar 

  • Theraulaz G, Gautrais J, Camazine S, Deneubourg J-L (2003) The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philos Trans R Soc A 361:1263–1282. doi:10.1098/rsta.2003.1198

    Article  MathSciNet  Google Scholar 

  • Tofilski A, Ratnieks FLW (2005) Sand pile formation in Dorymyrmex ants. J Insect Behav 18(4):505–512. doi:10.1007/s10905-005-5608-8

    Article  Google Scholar 

  • Tschinkel WR (2003) Subterranean ant nests: trace fossils past and future? Palaeogeogr Palaeoclim Palaeoecol 192:321–333. doi:10.1016/S0031-0182(02)00690-9

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc B 237:37–72. doi:10.1098/rstb.1952.0012

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sai Krishna Koushik E. and Raghavender M., undergraduates of the Dept. of Chemical Engineering, IIT Madras, for providing us with photographs of ant craters (Fig. 1). We also thank Danny Raj, doctoral scholar at IIT Madras, who kindled our interest in the activity of ants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pushpavanam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picardo, J.R., Pushpavanam, S. Understanding the Shape of Ant Craters: A Continuum Model. Bull Math Biol 77, 470–487 (2015). https://doi.org/10.1007/s11538-015-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0063-y

Keywords

Navigation