Skip to main content

Advertisement

Log in

A Comparison and Catalog of Intrinsic Tumor Growth Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Determining the mathematical dynamics and associated parameter values that should be used to accurately reflect tumor growth continues to be of interest to mathematical modelers, experimentalists and practitioners. However, while there are several competing canonical tumor growth models that are often implemented, how to determine which of the models should be used for which tumor types remains an open question. In this work, we determine the best fit growth dynamics and associated parameter ranges for ten different tumor types by fitting growth functions to at least five sets of published experimental growth data per type of tumor. These time-series tumor growth data are used to determine which of the five most common tumor growth models (exponential, power law, logistic, Gompertz, or von Bertalanffy) provides the best fit for each type of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe R, Shimizu T, Sugawara H, Watanabe H, Nakamura H, Choei H, Sasaki N, Yamagishi S, Takeuchi M, Shimizu H (2004) Regulation of human melanoma growth and metastasis by AGE–AGE receptor interactions. J Investig Dermatol 122:461–467

    Article  Google Scholar 

  • Ahonen MH, Zhuang Y-H, Aine R, Ylikomi T, Tuohimaa P (2000) Androgen receptor and vitamin D receptor in human ovarian cancer: growth stimulation and inhibition by ligands. Int J Cancer 86:40–46

    Article  Google Scholar 

  • Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Joke G.Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS Journal 276:886–902

    Article  Google Scholar 

  • Boukerche H, Berthier-Vergnes O, Bailly M, Dore J, Leung L, McGregor J (1989) A monoclonal antibody (LYP18) directed against the blood platelet glycoprotein IIb/IIIa complex inhibits human melanoma growth in vivo. Blood 74:909–912

    Google Scholar 

  • Bregman MD, Funk C, Fukushima M (1986) Inhibition of human melanoma growth by prostaglandin A, D, and J analogues. Cancer Res 46:2740–2744

    Google Scholar 

  • Brooks S, Gelman A, Jones GL, Meng X-L (2011) Handbook of Markov chain Monte Carlo, 1st edn. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Brown D, Rothery P (1993) Models in biology: mathematics, statistics and computing. Wiley, New York

    MATH  Google Scholar 

  • Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL (1997) Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32(2):151–156

    Article  Google Scholar 

  • Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M (2000) Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer 87:595–600

    Article  Google Scholar 

  • Coopman PJP, Do MTH, Barth M, Bowden ET, Hayes AJ, Basyuk E, Blancatok JK, Vezza PR, McLeskey SW, Mangeat PH, C. Mueller S (2000) The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406:742–747

    Article  Google Scholar 

  • de Pillis L, Caldwell T, Sarapata E, Williams H (2013) Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. DCDS 18(4):915–943

    Article  MATH  Google Scholar 

  • de Pillis L, Radunskaya A (2006) Some promising approaches to tumor-immune modeling. Contemp Math 410:89–105

    Article  Google Scholar 

  • Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor size in recurrent malignant glioma: 1d, 2d, or 3d? Am J Neuroradiol 26(4):770–776

    Google Scholar 

  • Dhanabal M, Ramchandran R, Volk R (1999) Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 59:189–197

    Google Scholar 

  • Du Z, Hou S (2003) The anti-angiogenic activity of human endostatin inhibits bladder cancer growth and its mechanism. J Urol 170:2000–2003

    Article  Google Scholar 

  • Duffey DC, Chen Z, Dong G (1999) Expression of a dominant-negative mutant inhibitor-\(\kappa \)B\(\alpha \) of nuclear factor- \(\kappa \)B in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 59:3468–3474

    Google Scholar 

  • Elishmereni M, Kheifetz Y, Söndergaard H, Overgaard RV, Agur Z (2011) An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers. PLoS Comput Biol 7:e1002206

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764

    Article  Google Scholar 

  • Fabbri M, Iliopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Zanesi N, Yendamuri S, Han S-Y, Amadori D, Huebner K, Croce CM (2005) WWOX gene restoration prevents lung cancer growth in vitro and in vivo. PNAS 102:15611–15616

    Article  Google Scholar 

  • Fujimoto N, Sugita A, Terasawa Y, Kato M (1995) Observations on the growth rate of renal cell carcinoma. Int J Urol 2:71–76

    Article  Google Scholar 

  • Fujiwara T, Grimm A, Mukhopadhyay T (1993) A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 53:4129–4133

    Google Scholar 

  • Gerlee P (2013) The model muddle: in search of tumor growth laws. Cancer Res 73(8):2407–2411

    Article  Google Scholar 

  • Gilks WWR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice: interdisciplinary statistics, 1st edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Golshani R, Lopez L, Estrella V (2008) Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res 68:483–491

    Article  Google Scholar 

  • Hart D, Shochat E, Agur Z (1998) The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer 78:382–387

    Article  Google Scholar 

  • Huang D, Ding Y, Luo W-M (2008) Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res 68:81–88

    Article  Google Scholar 

  • Huynh H, Chow PK, Palanisamy N, Salto-Tellez M (2008) Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol 49:52–60

    Article  Google Scholar 

  • Inoue K-I, Kawahito Y, Tsubouchi Y, Kohno M, Yoshimura R, Yoshikawa T, Sano H (2001) Expression of peroxisome proliferator-activated receptor \(\gamma \) in renal cell carcinoma and growth inhibition by its agonists. Biochem Biophys Res Commun 287:727–732

    Article  Google Scholar 

  • Ito T, Kawata S, Tamura S, Igura T, Nagase T, Miyagawa J-I, Yamazaki E, Ishiguro H, Matsuzawa Y (1996) Suppression of human pancreatic cancer growth in BALB/c nude mice by manumycin, a farnesyl: protein transferase inhibitor. Cancer Sci 87(2):113–116

    Google Scholar 

  • Jackson TL, Byrne HM (2000) A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math Biosci 164:17–38

    Article  MathSciNet  MATH  Google Scholar 

  • Juhl H, Downing SG, Wellstein A, Czubayko F (1997) HER-2/neu is rate-limiting for ovarian cancer growth. J Biol Chem 272(47):29482–29486

    Article  Google Scholar 

  • Jung C-R, Yoo J, Jang YJ, Kim S, Chu I-S, Yeom YI, Choi JY, Im D-S (2006) Adenovirus-mediated transfer of siRNa against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. J Hepatol 43:1042–1052

    Article  Google Scholar 

  • Kamada M, So A, Muramaki M (2007) Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6:299–308

    Article  Google Scholar 

  • Kisfalvi K, Eibl G, Sinnett-Smith J (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69:6539–6545

    Article  Google Scholar 

  • Kunstfeld R, Wickenhauser G, Michaelis U, Teifel M, Umek W, Naujoks K, Wolsh K, Petzelbauer P (2003) Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a humanized SCID mouse model. J Investig Dermatol 120:476–482

    Article  Google Scholar 

  • Lagarias JC, Reed JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  MATH  Google Scholar 

  • Lieubeau-Teillet B, Rak J, Jothy S (1998) von Hippel–Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res 58:4957–4962

    Google Scholar 

  • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6(3):e1000696

    Article  MathSciNet  Google Scholar 

  • Liu T-J, Wang M, Breau RL, Henderson Y, El-Naggar AK, Steck KD, Sicard MW, Clayman GL (1999) Apoptosis induction by E2F–1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines. Cancer Gene Therapy 6:163–172

    Article  Google Scholar 

  • Liu Y, Poon RT, Li Q (2005) Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 65:3691–3699

    Article  Google Scholar 

  • LoTempio MM, Veena MS, Steele HL (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11:6994–7002

    Article  Google Scholar 

  • Lu R, Serrero G (1999) Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol 179:297–304

    Article  Google Scholar 

  • Miyake H, Hara I, Kamidono S (2001) Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. Clin Cancer Res 7:4245–4252

    Google Scholar 

  • Moody TW, Zia F, Draoui M, Brenneman DE, Fridkin M, Davidson A, Gozes I (1993) A vasoactive intestinal peptide antagonist inhibits non-small cell lung cancer growth. Biochemistry 90:4345–4349

    Google Scholar 

  • Murgo AJ (1985) Inhibition of B16-BL6 melanoma growth in mice by methionine–enkephalin. J Natl Cancer Inst 75:476–482

    Google Scholar 

  • Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Hioki K, Tsubura A (2001) Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 22:891–897

    Article  Google Scholar 

  • Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N (1998) Inhibitory effects of ginsenoside Rh\(_2\) on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res 89:733–740

    Article  Google Scholar 

  • Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, Haga K, Asaka M, Ramirez F, Yoshida T (2003) Downregulation and growth inhibitory effect of epithelial-type Krüppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun 308:251–256

    Article  Google Scholar 

  • Okegawa T, Pong R-C, Li Y (2001) The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of CAR protein structure. Cancer Res 61:6592–6600

    Google Scholar 

  • Petitclerc E, Strömblad S, von Schalscha TL (1999) Integrin \(\alpha _V\beta _3\) promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 59:2724–2730

    Google Scholar 

  • Polato F, Codegoni A, Fruscio R (2005) PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res 11:6835–6839

    Article  Google Scholar 

  • Prewett M, Rothman M, Waksal H (1998) Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 4:2957–2966

    Google Scholar 

  • Reinmuth N, Fan F, Liu W, Parikh AA, Stoeltzing O, Jung YD, Bucana CD, Radinsky R, Gallick GE, Ellis LM (2002) Impact of insulin-like growth factor receptor-I function on angiogenesis, growth, and metastasis of colon cancer. Lab Investig 82:1377–1389

    Article  Google Scholar 

  • Richmond A, Lawson DH, Nixon DW (1983) Extraction of a melanoma growth-stimulatory activity from culture medium conditioned by the Hs0294 human melanoma cell line. Cancer Res 43:2106–2112

    Google Scholar 

  • Ricker JL, Chen Z, Yang XP (2004) 2-Methoxyestradiol inhibits hypoxia-inducible factor 1\(\alpha \), tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin Cancer Res 10:8665–8673

    Article  Google Scholar 

  • Robertson-Tessi M, El-Kareh A, Goriely A (2012) A mathematical model of tumor-autoimmune interactions. J Theor Biol 294:56–73

    Article  MathSciNet  Google Scholar 

  • Sanga S, Sinek JP, Frieboes HB, Ferrari M, Fruehauf JP, Cristini V (2006) Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev Anticancer Ther 6:1361–1376

    Article  Google Scholar 

  • Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPAR\(_\gamma \). Nature Med 4:1046–1052

    Article  Google Scholar 

  • Schirner M, Hoffmann J, Menrad A (1998) Antiangiogenic chemotherapeutic agents: characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res 4:1331–1336

    Google Scholar 

  • Sharma S, Stolina M, Lin Y, Gardner B, Miller PW, Kronenberg M, Dubinett SM (1999) T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 163:5020–5028

    Google Scholar 

  • Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, DuBois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Investig 99:2254–2259

    Article  Google Scholar 

  • Shi W, Siemann D (2002) Inhibition of renal cell carcinoma angiogenesis and growth by antisense oligonucleotides targeting vascular endothelial growth factor. Br J Cancer 87:119–126

    Article  Google Scholar 

  • Slezak DF, Surez C, Cecchi GA, Marshall G, Stolovitzky G (2010) When the optimal is not the best: parameter estimation in complex biological models. PLoS One 5:e13283

  • Smith MCP, Luker KE, Garbow JR (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64:8604–8612

    Article  Google Scholar 

  • Sunwoo JB, Chen Z, Dong G (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor- \(\kappa \)B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7:1419–1428

    Google Scholar 

  • Takahashi T, Carbone D, Takahashi T (1992) Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 52:2340–2343

    Google Scholar 

  • Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402

    Article  Google Scholar 

  • Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, Inoue K-I, Hla T, Kondo M (2000) Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-\(\gamma \) agonists through induction of apoptosis. Biochem Biophys Res Commun 270:400–405

    Article  Google Scholar 

  • Vogler M, Walczak H, Stadel D (2009) Targeting XIAP bypasses Bcl-2 mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68(19):7956–7965

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws. ii). Hum biol 10(2):181–213

    Google Scholar 

  • Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Investig 95:1789–1797

    Article  Google Scholar 

  • Winkler G (2003) Image analysis, random fields and Markov chain Monte Carlo methods, 2nd edn. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Wong C-M, Yam JW-P, Ching Y-P (2005) Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65:8861–8868

    Article  Google Scholar 

  • Yokoyama Y, Dhanabal M, Griffioen AW (2000) Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 60:2190–2196

    Google Scholar 

  • Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  Google Scholar 

  • Zervos EE, Norman JG, Gower WR, Franz MG, Rosemurgy AS (1997) Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo. J Surg Res 69(2):367–371

    Article  Google Scholar 

  • Zheng Y, Moore H, Piryatinska A, Solis T, Sweet-Cordero EA (2013) Mathematical modeling of tumor cell proliferation kinetics and label retention in a mouse model of lung cancer. Cancer Res 73(12):3525–3533

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Harvey Mudd College for providing us with the resources to complete this publication, and Dr. Ami Radunskaya, who provided feedback on the undergraduate thesis paper from which this work was adapted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Sarapata or L. G. de Pillis .

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 958 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarapata, E.A., de Pillis , L.G. A Comparison and Catalog of Intrinsic Tumor Growth Models. Bull Math Biol 76, 2010–2024 (2014). https://doi.org/10.1007/s11538-014-9986-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9986-y

Keywords

Navigation