Skip to main content
Log in

N-site Phosphorylation Systems with 2N-1 Steady States

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multisite protein phosphorylation plays a prominent role in intracellular processes like signal transduction, cell-cycle control and nuclear signal integration. Many proteins are phosphorylated in a sequential and distributive way at more than one phosphorylation site. Mathematical models of \(n\)-site sequential distributive phosphorylation are therefore studied frequently. In particular, in Wang and Sontag (J Math Biol 57:29–52, 2008), it is shown that models of \(n\)-site sequential distributive phosphorylation admit at most \(2n-1\) steady states. Wang and Sontag furthermore conjecture that for odd \(n\), there are at most \(n\) and that, for even \(n\), there are at most \(n+1\) steady states. This, however, is not true: building on earlier work in Holstein et al. (Bull Math Biol 75(11):2028–2058, 2013), we present a scalar determining equation for multistationarity which will lead to parameter values where a \(3\)-site system has \(5\) steady states and parameter values where a \(4\)-site system has \(7\) steady states. Our results therefore are counterexamples to the conjecture of Wang and Sontag. We furthermore study the inherent geometric properties of multistationarity in \(n\)-site sequential distributive phosphorylation: the complete vector of steady state ratios is determined by the steady state ratios of free enzymes and unphosphorylated protein and there exists a linear relationship between steady state ratios of phosphorylated protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Conradi C, Flockerzi D (2012) Multistationarity in mass action networks with applications to ERK activation. J Math Biol 65(1):107–156

    Article  MathSciNet  MATH  Google Scholar 

  • Conradi C, Flockerzi D, Raisch J (2008) Multistationarity in the activation of an MAPK: parametrizing the relevant region in parameter space. Math Biosci 211(1):105–131

    Article  MathSciNet  MATH  Google Scholar 

  • Conradi C, Mincheva M (2014) Catalytic constants enable the emergence of bistability in dual phosphorylation. J R Soc Interface 11(95):20140158

    Article  Google Scholar 

  • Enciso G, Kellogg D, Vargas A (2014) Compact modeling of allosteric multisite proteins: application to a cell size checkpoint. PLoS Comput Biol 10(2):e1003443

    Article  Google Scholar 

  • Feliu E, Wiuf C (2012) Enzyme-sharing as a cause of multi-stationarity in signalling systems. J R Soc Interface 9(71):1224–1232

    Article  Google Scholar 

  • Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102(41):14617–14622

  • Gunawardena J (2007) Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys J 93(11):3828–3834

    Article  Google Scholar 

  • Holstein K, Flockerzi D, Conradi C (2013) Multistationarity in sequential distributed multisite phosphorylation networks. Bull Math Biol 75(11):2028–2058

    Article  MathSciNet  MATH  Google Scholar 

  • Karp R, Pérez Millán M, Dasgupta T, Dickenstein A, Gunawardena J (2012) Complex-linear invariants of biochemical networks. J Theor Biol 311:130–138

  • Kumar M, Gunawardena J (2008) The geometry of multisite phosphorylation. Biophys J 95(12):5533–5543

  • Markevich N, Hoek, Kholodenko B (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  Google Scholar 

  • Pérez Millán M, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74:1027–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Ryerson S, Enciso G (2013) Ultrasensitivity in independent multisite systems. J Math Biol. doi:10.1007/s00285-013-0727-x

  • Salazar C, Höfer T (2007) Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions. FEBS J 274:1046–1061

    Article  Google Scholar 

  • Salazar C, Höfer T (2009) Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J 276(12):3177–3198

    Article  Google Scholar 

  • Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. I. structural conditions of multistationarity and other nontrivial behavior. Chaos 11(1):170–179

  • Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11(1):180–195

  • Thomson M., Gunawardena J. (2007) Multi-bit information storage by multisite phosphorylation. arXiv:0706.3735

  • Thomson M, Gunawardena J (2009) The rational parameterisation theorem for multisite post-translational modification systems. J Theor Biol 261(4):626–636

    Article  MathSciNet  Google Scholar 

  • Thomson M, Gunawardena J (2009) Unlimited multistability in multisite phosphorylation systems. Nature 460(7252):274–277

    Article  Google Scholar 

  • Wang L, Sontag E (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57:29–52

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Conradi.

Appendix: The Network Matrices for \(n\ge 2\)

Appendix: The Network Matrices for \(n\ge 2\)

The matrices \({\mathcal {Y}}\), \(Z\), \(E\) and \(L\) can be obtained from Eqs. (7), (8), (9) and (10) of this manuscript. We recall the definition of the stoichiometric matrix \(S\) from Sect. 3 of Holstein et al. (2013). With the following sub-matrices

$$\begin{aligned} n_{11}&= \left[ \begin{array}{rrrrrr} -1&{} 1 &{} 1 &{} 0 &{} 0 &{} 0 \\ -1&{} 1 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} -1&{} 1 &{} 1 \end{array} \right] ,\ \ n_{12}&= \left[ \begin{array}{rrrrrr} -1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -1&{} 1 &{} 1 \end{array} \right] ,\\ n_{21}&= \left[ \begin{array}{rrrrrr} 1 &{} -1&{} -1&{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} -1&{} 1 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 &{} -1&{} -1 \end{array} \right] ,\ \ n_{22}&= \left[ \begin{array}{rrrrrr} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ -1&{} 1 &{} 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array} \right] . \end{aligned}$$

of dimension \(3\times 6\), one has

For the convenience of the reader, we close this appendix with the data for \(n=3\):

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flockerzi, D., Holstein, K. & Conradi, C. N-site Phosphorylation Systems with 2N-1 Steady States. Bull Math Biol 76, 1892–1916 (2014). https://doi.org/10.1007/s11538-014-9984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9984-0

Keywords

Navigation