Skip to main content
Log in

Selecting Radiotherapy Dose Distributions by Means of Constrained Optimization Problems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.

In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be instrumental in deriving good quality tests to select radiotherapy treatment plans in rather general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PTV :

Planning Target Volume

OAR :

Organ at Risk

HT :

Healthy Tissue

Dp :

Prescribed Radiation Dose on the PTV

LQ :

Linear Quadratic Model

Gy :

grays (1 Gy is 1 joule per kilogram)

BED :

Biological Effective Dose

ER :

Early-Responding Tissue

LR :

Late-Responding Tissue

TPS :

Treatment Planning System

HI :

Homogeneity Index

CI :

Conformity Index

LINAC :

Linear Particle Accelerator

DVH :

Dose–Volume Histogram

References

  • Akpati, H., Kim, C., Kim, B., Park, T., & Meek, A. (2008). Unified dosimetry index (UDI): a figure of merit for ranking treatment plans. J. Appl. Clin. Med. Phys., 9(3), 2803. doi:10.1120/jacmp.v9i3.2803.

    Article  Google Scholar 

  • Alfonso, J. C. L., Buttazzo, G., García-Archilla, B., Herrero, M. A., & Núñez, L. (2012). A class of optimization problems in radiotherapy dosimetry planning. Discrete Contin. Dyn. Syst., Ser. B, 17(6), 1651–1672. doi:10.3934/dcdsb.2012.17.1651.

    Article  MathSciNet  MATH  Google Scholar 

  • Andasari, V., Gerisch, A., Lolas, G., South, A. P., & Chaplain, M. A. (2011). Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol., 63(1), 141–171. doi:10.1007/s00285-010-0369-1.

    Article  MathSciNet  MATH  Google Scholar 

  • Araujo, R. P., & McElwain, D. L. (2004). A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol., 66(5), 1039–1091. doi:10.1016/j.bulm.2003.11.002.

    Article  MathSciNet  Google Scholar 

  • Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., & Rich, J. N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. doi:10.1038/nature05236.

    Article  Google Scholar 

  • Barendsen, G. W. (1982). Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J. Radiat. Oncol. Biol. Phys., 8(11), 1981–1997. doi:10.1016/0360-3016(82)90459-X.

    Article  Google Scholar 

  • Bellomo, N., Bellouquid, A., & Delitala, M. (2004). Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci., 14(11), 1683–1733.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertuzzi, A., Fasano, A., Gandolfi, A., & Sinisgalli, C. (2008). Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry. Bull. Math. Biol., 70(4), 992–1012. doi:10.1007/s11538-007-9287-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertuzzi, A., Bruni, C., Fasano, A., Gandolfi, A., Papa, F., & Sinisgalli, C. (2010). Response of tumor spheroids to radiation: modeling and parameter estimation. Bull. Math. Biol., 72(5), 1069–1091. doi:10.1007/s11538-009-9482-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Boissonnat, J. D., Devillers, O., Pion, S., Teillaud, M., & Yvinec, M. (2002). Triangulations in CGAL. Comput. Geom. Theory Appl., 22, 5–19. doi:10.1016/S0925-7721(01)00054-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Brenner, D. J., Hlatky, L. R., Hahnfeldt, P. J., Huang, Y., & Sachs, R. K. (1998). The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat. Res., 150, 83–91. doi:10.2307/3579648.

    Article  Google Scholar 

  • Brezis, H. (2010). Functional analysis, Sobolev spaces and partial differential equations. Berlin: Springer.

    Book  Google Scholar 

  • Buttazzo, G. (1989). Semicontinuity, relaxation and integral representation in the calculus of variations. Harlow: Longman Scientific & Technical.

    MATH  Google Scholar 

  • Buttazzo, G., Giaquinta, M., & Hildebrandt, S. (1998). One-dimensional calculus of variations: an introduction. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Byrne, H., & Preziosi, L. (2003). Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol., 20(4), 341–366. doi:10.1093/imammb/20.4.341.

    Article  MathSciNet  MATH  Google Scholar 

  • Byrne, H. M., Alarcón, T., Owen, M. R., Webb, S. D., & Maini, P. K. (2006). Modelling aspects of cancer dynamics: a review. Philos. Trans. A Math. Phys. Eng. Sci., 364(1843), 1563–1578.

    Article  MathSciNet  Google Scholar 

  • Cappuccio, A., Herrero, M. A., & Núñez, L. (2009). Tumour radiotherapy and its mathematical modelling. Contemp. Math., 492, 77–102.

    Article  MathSciNet  Google Scholar 

  • Cappuccio, A., Herrero, M. A., & Núñez, L. (2009). Biological optimization of tumor radiosurgery. Med. Phys., 36(1), 98–104.

    Article  Google Scholar 

  • Carlson, D. J., Stewart, R. D., Li, X. A., Jennings, K., Wang, J. Z., & Guerrero, M. (2004). Comparison of in vitro and in vivo α/β ratios for prostate cancer. Phys. Med. Biol., 49, 4477–4491. doi:10.1088/0031-9155/49/19/003.

    Article  Google Scholar 

  • CGAL Computational Geometry Algorithms Library. http://www.cgal.org.

  • Chao, M., Xie, Y., Moros, E. G., Le, Q. T., & Xing, L. (2010). Image-based modeling of tumor shrinkage in head and neck radiation therapy. Med. Phys., 37(5), 2351–2358. doi:10.1118/1.3399872.

    Article  Google Scholar 

  • Ciarlet, P. G. (1978). The finite element method for elliptic problems. Philadelphia: SIAM. Reprint of the original, 2002.

    MATH  Google Scholar 

  • Dale, R., & Jones, B. (2007). Radiobiological modelling in radiation oncology. The British Institute of Radiology, London, UK.

  • de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational geometry: algorithms and applications (3rd ed.). Santa Clara: Springer.

    Book  MATH  Google Scholar 

  • Deasy, J. O., Blanco, A. I., & Clark, V. H. (2003). CERR: a computational environment for radiotherapy research. Med. Phys., 30(5), 979–985. doi:10.1118/1.1568978.

    Article  Google Scholar 

  • Debus, J., Wuendrich, M., Pirzkall, A., Hoess, A., Schlegel, W., Zuna, I., Engenhart-Cabillic, R., & Wannenmacher, M. (2001). High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J. Clin. Oncol., 19(15), 3547–3553.

    Google Scholar 

  • Dionysiou, D. D., Stamatakos, G. S., Gintides, D., Uzunoglu, N., & Kyriaki, K. (2008). Critical parameters determining standard radiotherapy treatment outcome for glioblastoma multiforme: a computer simulation. Open Biomed. Eng. J., 2, 43–51. doi:10.2174/1874120700802010043.

    Article  Google Scholar 

  • Enderling, H., Park, D., Hlatky, L., & Hahnfeldt, P. (2009). The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Math. Model. Nat. Phenom., 4(3), 117–133. doi:10.1051/mmnp/20094305.

    Article  MathSciNet  MATH  Google Scholar 

  • Enderling, H., Chaplain, M. A., & Hahnfeldt, P. (2010). Quantitative modeling of tumor dynamics and radiotherapy. Acta Biotheor., 58(4), 341–353. doi:10.1007/s10441-010-9111-z.

    Article  Google Scholar 

  • Feuvret, L., Noël, G., Mazeron, J. J., & Bey, P. (2006). Conformity index: a review. Int. J. Radiat. Oncol. Biol. Phys., 64(2), 333–342. doi:10.1016/j.ijrobp.2005.09.028.

    Article  Google Scholar 

  • Fowler, J. F. (1989). The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol., 62(740), 679–694.

    Article  Google Scholar 

  • Gao, X., McDonald, J. T., Hlatky, L., & Enderling, H. (2013). Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res., 73(5), 1481–1490. doi:10.1158/0008-5472.CAN-12-3429.

    Article  Google Scholar 

  • Grimm, J., LaCouture, T., Croce, R., Yeo, I., Zhu, Y., & Xue, J. (2011). Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J. Appl. Clin. Med. Phys., 12(2), 3368.

    Google Scholar 

  • Hall, E. J., & Giaccia, A. J. (2006). Radiobiology for the radiologist. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  • International Commission on Radiation Units and Measurements (1980). Radiation quantities and units. ICRU report 33. Washington DC, USA.

  • International Commission on Radiation Units and Measurements (2010). Prescribing, recording, and reporting IMRT. ICRU Report 83. Washington DC, USA.

  • Johnson, C. (2009). Numerical solution of partial differential equations by the finite element method. Mineola: Dover Reprint of the 1987 edition.

    MATH  Google Scholar 

  • Jones, B., Dale, R. G., Deehan, C., Hopkins, K. I., & Morgan, D. A. (2001). The role of biologically effective dose (BED) in clinical oncology. Clin. Oncol. (R. Coll. Radiol.), 13(2), 71–81.

    Google Scholar 

  • Kehwar, T. S. (2005). Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J. Cancer Res. Ther., 1(3), 168–179. doi:10.4103/0973-1482.19597.

    Article  Google Scholar 

  • Kempf, H., Bleicher, M., & Meyer-Hermann, M. (2010). Spatio-temporal cell dynamics in tumour spheroid irradiation. Eur. Phys. J. D, 60(1), 177–193. doi:10.1140/epjd/e2010-00178-4.

    Article  Google Scholar 

  • Knöös, T., Kristensen, I., & Nilsson, P. (1998). Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int. J. Radiat. Oncol. Biol. Phys., 42(5), 1169–1176. doi:10.1016/S0360-3016(98)00239-9.

    Article  Google Scholar 

  • Law, M. Y., & Liu, B. (2009). Informatics in radiology: DICOM-RT and its utilization in radiation therapy. Radiographics, 29(3), 655–667. doi:10.1148/rg.293075172.

    Article  Google Scholar 

  • Lomax, N. J., & Scheib, S. G. (2003). Quantifying the degree of conformity in radiosurgery treatment planning. Int. J. Radiat. Oncol. Biol. Phys., 55(5), 1409–1419. doi:10.1016/S0360-3016(02)04599-6.

    Article  Google Scholar 

  • Macklin, P., McDougall, S., Anderson, A. R., Chaplain, M. A., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58(4–5), 765–798. doi:10.1007/s00285-008-0216-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, N. K., Gaffney, E. A., Gatenby, R. A., & Maini, P. K. (2010). Tumour-stromal interactions in acid-mediated invasion: a mathematical model. J. Theor. Biol., 267(3), 461–470. doi:10.1016/j.jtbi.2010.08.028.

    Article  MathSciNet  Google Scholar 

  • Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12(5), 323–334. doi:10.1038/nrc3261.

    Article  Google Scholar 

  • Mayles, P., Nahum, A., & Rosenwald, J. C. (2007). Handbook of radiotherapy physics: theory and practice. London: Taylor & Francis.

    Book  Google Scholar 

  • McAneney, H., & O’Rourke, S. F. (2007). Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy. Phys. Med. Biol., 52(4), 1039–1054. doi:10.1088/0031-9155/52/4/012.

    Article  Google Scholar 

  • Menhel, J., Levin, D., Alezra, D., Symon, Z., & Pfeffer, R. (2006). Assessing the quality of conformal treatment planning: a new tool for quantitative comparison. Phys. Med. Biol., 51(20), 5363–5375. doi:10.1088/0031-9155/51/20/019.

    Article  Google Scholar 

  • Meyer, R. R., Zhang, H. H., Goadrich, L., Nazareth, D. P., Shi, L., & D’Souza, W. D. (2007). A multiplan treatment-planning framework: a paradigm shift for intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 68(4), 1178–1189. doi:10.1016/j.ijrobp.2007.02.051.

    Article  Google Scholar 

  • Minniti, G., Amichetti, M., & Enrici, R. M. (2009). Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat. Oncol., 4, 42. doi:10.1186/1748-717X-4-42.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Olive, P. L. (1998). The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat. Res., 150(Suppl. 5), S42–S51.

    Article  Google Scholar 

  • O’Rourke, S. F., McAneney, H., & Hillen, T. (2009). Linear quadratic and tumour control probability modelling in external beam radiotherapy. J. Math. Biol., 58(4–5), 799–817. doi:10.1007/s00285-008-0222-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Paddick, I. (2000). A simple scoring ratio to index the conformity of radiosurgical treatment plans. J. Neurosurg., 93(Suppl. 3), 219–222.

    Google Scholar 

  • Palta, J. R., & Mackie, T. R. (2003). Intensity-modulated radiation therapy—the state of the art,. Madison: Medical Physics Publishing.

    Google Scholar 

  • Perfahl, H., Byrne, H. M., Chen, T., Estrella, V., Alarcón, T., Lapin, A., Gatenby, R. A., Gillies, R. J., Lloyd, M. C., Maini, P. K., Reuss, M., & Owen, M. R. (2011). Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE, 6(4), e14790. doi:10.1371/journal.pone.0014790.

    Article  Google Scholar 

  • Ramis-Conde, I., Chaplain, M. A., Anderson, A. R., & Drasdo, D. (2009). Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys. Biol., 6(1), 016008. doi:10.1088/1478-3975/6/1/016008.

    Article  Google Scholar 

  • Rockne, R., Alvord, E. C. Jr., Rockhill, J. K., & Swanson, K. R. (2009). A mathematical model for brain tumor response to radiation therapy. J. Math. Biol., 58(4–5), 561–578. doi:10.1007/s00285-008-0219-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Rockne, R., Rockhill, J. K., Mrugala, M., Spence, A. M., Kalet, I., Hendrickson, K., Lai, A., Cloughesy, T., Alvord, E. C. Jr., & Swanson, K. R. (2010). Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys. Med. Biol., 55(12), 3271–3285. doi:10.1088/0031-9155/55/12/001.

    Article  Google Scholar 

  • Schaller, G., & Meyer-Hermann, M. (2006). Continuum versus discrete model: a comparison for multicellular tumour spheroids. Philos. Trans. A Math. Phys. Eng. Sci., 364, 1443–1464. 1843. doi:10.1098/rsta.2006.1780.

    Article  MathSciNet  Google Scholar 

  • Schenk, O., Wächter, A., & Hagemann, M. (2007). Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim. Appl., 36(2–3), 321–341. doi:10.1007/s10589-006-9003-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Schenk, O., Bollhöfer, M., & Römer, R. A. (2008). On large-scale diagonalization techniques for the Anderson model of localization. SIAM J. Sci. Comput., 28(3), 963–983. doi:10.1137/050637649.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, H. R. (1988). Finite element methods. London: Academic Press.

    MATH  Google Scholar 

  • Shaw, E., Kline, R., Gillin, M., Souhami, L., Hirschfeld, A., Dinapoli, R., & Martin, L. (1993). Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int. J. Radiat. Oncol. Biol. Phys., 27(5), 1231–1239. doi:10.1016/0360-3016(93)90548-A.

    Article  Google Scholar 

  • Shepard, D. M., Ferris, M. C., Olivera, G. H., & Mackie, T. R. (1999). Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev., 41(4), 721–744. doi:10.1137/S0036144598342032.

    Article  MATH  Google Scholar 

  • Shrieve, D. C., Hazard, L., Boucher, K., & Jensen, R. L. (2004). Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J. Neurosurg., 101(Suppl. 3), 390–395.

    Google Scholar 

  • Thames, H. D., Bentzen, S. M., Turesson, I., Overgaard, M., & Van den Bogaert, W. (1990). Time-dose factors in radiotherapy: a review of the human data. Radiother. Oncol., 19(3), 219–235. doi:10.1016/0167-8140(90)90149-Q.

    Article  Google Scholar 

  • Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T., & Gérard, J. P. (2013). Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol., 10(1), 52–60. doi:10.1038/nrclinonc.2012.203.

    Article  Google Scholar 

  • Vernimmen, F. J., & Slabbert, J. P. (2010). Assessment of the alpha/beta ratios for arteriovenous malformations, meningiomas, acoustic neuromas, and the optic chiasma. Int. J. Radiat. Biol., 86(6), 486–498. doi:10.3109/09553001003667982.

    Article  Google Scholar 

  • Wachter, A., & Biegler, L. T. (2006). On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program., 106(1), 25–57. doi:10.1007/s10107-004-0559-y.

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, T. H., Bova, F. J., Friedman, W. A., Buatti, J. M., Bouchet, L. G., & Meeks, S. L. (2003). A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int. J. Radiat. Oncol. Biol. Phys., 57(4), 1141–1149. doi:10.1016/S0360-3016(03)01563-3.

    Article  Google Scholar 

  • Williams, M. V., Denekamp, J., & Fowler, J. F. (1985). A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int. J. Radiat. Oncol. Biol. Phys., 11(1), 87–96. doi:10.1016/0360-3016(85)90366-9.

    Article  Google Scholar 

  • Wu, Q. R., Wessels, B. W., Einstein, D. B., Maciunas, R. J., Kim, E. Y., & Kinsella, T. J. (2003). Quality of coverage: conformity measures for stereotactic radiosurgery. J. Appl. Clin. Med. Phys., 4(4), 374–381.

    Article  Google Scholar 

  • Wu, V. W., Kwong, D. L., & Sham, J. S. (2004). Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother. Oncol., 71(2), 201–206. doi:10.1016/j.radonc.2004.03.004.

    Article  Google Scholar 

  • Yoon, M., Park, S. Y., Shin, D., Lee, S. B., Pyo, H. R., Kim, D. Y., & Cho, K. H. (2007). A new homogeneity index based on statistical analysis of the dose-volume histogram. J. Appl. Clin. Med. Phys., 8(2), 9–17. doi:10.1120/jacmp.v8i2.2390.

    Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method. London: McGraw-Hill.

    MATH  Google Scholar 

Download references

Acknowledgements

J.C.L. Alfonso gratefully acknowledges a Ph.D. fellowship funded by MINECO (Spain). J.C.L. Alfonso, M.A. Herrero and L. Núñez have been partially supported by Spanish MINECO Grant MTM 2011-22656. B. García-Archilla was partially supported by MINECO Grant 2009-07849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Herrero.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 3.9 MB)

Appendix

Appendix

We provide here the main ingredients in the proofs of Theorems 2.1 and 2.2 in Sect. 2.

Proof of Theorem 2.1

It is readily seen that the functional given in (7) is lower semicontinuous (l.s.c.) on the space W 1,∞(Ω) endowed with the uniform convergence. Existence of at least one minimizer follows from the fact that the associated functional

$$ J^{*}(D) = J(D) + I_{K}(D), $$
(17)

where K is as in the statement of part (a) in the Theorem 2.1 and I K (D)=0 when DK,I K (D)=+∞ otherwise, is also l.s.c. on W 1,∞(Ω) with respect to the uniform convergence, since K is compact for that convergence. Then a minimizer of (17) (hence for the problem under consideration consisting of minimizing (7) under constraints (8)–(10)) exists by classical results (cf. Buttazzo 1989, Buttazzo et al. 1998).

On the other hand, a direct computation (similar to that performed in Alfonso et al. (2012) for a related problem) shows that the integrand in (7) is convex when inequalities (11) and (12) are satisfied. This in turn implies the convexity of J(D) in (7), whereupon uniqueness follows. □

Proof of Theorem 2.2

It is quite similar to that of Theorem 2.1. In particular, the functional

$$ J^{*}(D) = J(D) + I_{\overline{K}}(D) $$
(18)

is l.s.c. on the space W 1,∞(Ω) endowed with the uniform convergence, since \(\overline{K}\) is compact for that convergence. This yields the existence of minimizers of (18), and hence for the problem under consideration consisting of minimizing (7) under constraints (8)–(10) and (13), (14). In its turn, uniqueness follows exactly as in Theorem 2.1. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfonso, J.C.L., Buttazzo, G., García-Archilla, B. et al. Selecting Radiotherapy Dose Distributions by Means of Constrained Optimization Problems. Bull Math Biol 76, 1017–1044 (2014). https://doi.org/10.1007/s11538-014-9945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9945-7

Keywords

Navigation