Skip to main content

Advertisement

Log in

Effect of Migration in a Diffusion Model for Template Coexistence in Protocells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such a prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the nondegenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover.

    MATH  Google Scholar 

  • Alves, D., Campos, P. R. A., Silva, A. T. C., & Fontanari, J. F. (2001). Group selection models in prebiotic evolution. Phys. Rev. E, 63, 011911.

    Article  Google Scholar 

  • Aoki, K. (1982). A condition for group selection to prevail over counteracting individual selection. Evolution, 36, 832–842.

    Article  Google Scholar 

  • Bellomo, N., & Delitala, M. (2008). From the mathematical kinetic and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev., 5, 183–206.

    Article  Google Scholar 

  • Bellouquid, A., de Angelis, E., & Knopoff, D. (2013). From the modeling of the immune hallmarks of cancer to a black swan in biology. Math. Models Methods Appl. Sci., 23, 949–978.

    Article  MathSciNet  MATH  Google Scholar 

  • Blythe, R. A. (2007). The propagation of a cultural or biological trait by neutral genetic drift in a subdivided population. Theor. Popul. Biol., 71, 454–472.

    Article  MATH  Google Scholar 

  • Bresch, C., Niesert, U., & Harnasch, D. (1980). Hypercycles, parasites and packages. J. Theor. Biol., 85, 399–405.

    Article  Google Scholar 

  • Chalub, F. A. C. C., & Souza, M. O. (2009). A non-standard evolution problem arising in population genetics. Commun. Math. Sci., 7, 489–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. New York: Harper & Row.

    MATH  Google Scholar 

  • Czárán, T., & Szathmáry, E. (2000). Coexistence of replicators in prebiotic evolution. In U. Dieckmann, R. Law, & J. A. J. Metz (Eds.), The geometry of ecological interactions: simplifying spatial complexity (pp. 116–135). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Donato, R., Peliti, L., & Serva, M. (1997). The selection of altruistic behaviour. Theory Biosci., 116, 309–320.

    Google Scholar 

  • Doolittle, W. F. (2000). Uprooting the tree of life. Sci. Am., 282, 90–95.

    Article  Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of macromolecules. Naturwissenschaften, 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., & Schuster, P. (1978). The hypercycle. A principle of natural self-organization. Part C: the realistic hypercycle. Naturwissenschaften, 65, 341–369.

    Article  Google Scholar 

  • Eigen, M., Gardiner, W. C. Jr., & Schuster, P. (1980). Hypercycles and compartments. J. Theor. Biol., 85, 407–411.

    Article  Google Scholar 

  • Engel, K.-J., & Nagel, R. (2000). One-parameter semigroups for linear evolution equations. New York: Springer.

    MATH  Google Scholar 

  • Eshel, I. (1972). On the neighbor effect and the evolution of altruistic traits. Theor. Popul. Biol., 3, 258–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Fontanari, J. F., & Serva, M. (2013). Solvable model for template coexistence in protocells. Europhys. Lett., 101, 38006.

    Article  Google Scholar 

  • Fontanari, J. F., & Serva, M. (2014). Nonlinear group survival in Kimura’s model for the evolution of altruism. Math. Biosci., 249, 18–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Fontanari, J. F., Santos, M., & Szathmáry, E. (2006). Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. J. Theor. Biol., 239, 247–256.

    Article  MathSciNet  Google Scholar 

  • Kimura, M. (1983). Diffusion model of intergroup selection, with special reference to evolution of an altruistic character. Proc. Natl. Acad. Sci. USA, 80, 6317–6321.

    Article  MATH  Google Scholar 

  • Manrubia, S. C., & Briones, C. (2007). Modular evolution and increase of functional complexity in replicating RNA molecules. RNA, 13, 97–107.

    Article  Google Scholar 

  • Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Freeman.

    Google Scholar 

  • Mayr, E. (2001). The philosophical foundation of Darwinism. Proc. Am. Philos. Soc., 145, 488–495.

    Google Scholar 

  • Mayr, E. (2002). What evolution is. New York: Basic Books.

    Google Scholar 

  • Mayr, E. (2004). 80 years of watching the evolutionary scenery. Science, 305, 46–47.

    Article  Google Scholar 

  • Michod, R. E. (1983). Population biology of the first replicators: on the origin of genotype, phenotype, and organism. Am. Zool., 23, 5–14.

    Article  Google Scholar 

  • Michor, F., Iwasa, Y., & Nowak, M. A. (2004). Dynamics of cancer progression. Nat. Rev. Cancer, 4, 197–205.

    Article  Google Scholar 

  • Niesert, U., Harnasch, D., & Bresch, C. (1981). Origin of life between scylla and charybdis. J. Mol. Evol., 17, 348–353.

    Article  Google Scholar 

  • Nowak, M. A., & Sigmund, K. (2004). Evolutionary dynamics of biological games. Science, 303, 793–799.

    Article  Google Scholar 

  • Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466, 1057–1062.

    Article  Google Scholar 

  • Ogura, Y., & Shimakura, N. (1987). Stationary solutions and their stability for Kimura’s diffusion model with intergroup selection. J. Math. Kyoto Univ., 27, 305–347.

    MathSciNet  MATH  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in Fortran: the art of scientific computing. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rousset, F., & Lion, S. (2011). Much ado about nothing: Nowak et al.’s charge against inclusive fitness theory. J. Evol. Biol., 24, 1386–1392.

    Article  Google Scholar 

  • Silvestre, D. A. M. M., & Fontanari, J. F. (2008). Package models and the information crisis of prebiotic evolution. J. Theor. Biol., 252, 326–337.

    Article  Google Scholar 

  • Slatkin, M. (1981). Fixation probabilities and fixation times in a subdivided population. Evolution, 35, 477–488.

    Article  Google Scholar 

  • Szathmáry, E., & Demeter, L. (1987). Group selection of early replicators and the origin of life. J. Theor. Biol., 128, 463–486.

    Article  Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection: a critique of some current evolutionary thought. Princeton: Princeton University Press.

    Google Scholar 

  • Woese, C. (1998). The universal ancestor. Proc. Natl. Acad. Sci. USA, 95, 6854–6859.

    Article  Google Scholar 

  • Wright, S. (1951). The genetical structure of populations. Ann. Eugen., 15, 323–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Wynne-Edwards, V. C. (1962). Animal dispersion in relation to social behavior. London: Oliver & Boyd.

    Google Scholar 

Download references

Acknowledgements

The research of J.F.F. was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the research of M.S. was partially supported by PRIN 2009 protocollo n.2009TA2595.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Fontanari.

Additional information

M. Serva is on leave of absence from Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università dell’Aquila, I-67010 Coppito, L’Aquila, Italy.

Appendices

Appendix A: Local Fixation Probability for the M=0 Nonergodic Segregation Regime

As shown by Fontanari and Serva (2013), setting M=0 in Eq. (14) yields two possible steady-state solutions: the solution corresponding to the ergodic coexistence phase, which is a combination of two Delta functions and a regular function, ϕ(x)=A 0 δ(x)+A 1 δ(x−1)+ r (x) with A 0+A 1+B=1, and the solution corresponding to the nonergodic segregation phase, which is a combination of two Delta functions, ϕ(x)=A 0 δ(x)+A 1 δ(x−1) with A 0+A 1=1. The nonergodic regime, which is our focus here, occurs for C<π 2+S 2/4. Note that in both regimes, A 1 may be interpreted as the probability that the type 1 template fixates in a given protocell and a similar interpretation holds for A 0 as well. However, the result \(\bar{x} = A_{1}\), which we used to draw the curve for M=0 in Fig. 4, holds in the segregation regime only. In Fontanari and Serva (2013) we have calculated the dependence of the weight A 1 on the initial probability density ϕ(x,0) for S=0 only, and in this appendix we generalize that calculation for S≥0.

We begin by rewriting Eq. (9) for M=0,

$$\begin{aligned} \frac{\partial}{\partial \tau} \phi (x,\tau ) =& \frac{\partial^2}{\partial x^2} \bigl[ x (1-x)\phi (x, \tau ) \bigr] + S \frac{\partial}{\partial x} \bigl[ x (1 - x ) \phi (x,\tau )\bigr] \\ &{} + \bigl[ C x (1-x )-\bar{C} (\tau ) \bigr] \phi (x, \tau ), \end{aligned}$$
(33)

and introducing the abbreviation \(\langle f (x) \rangle_{\tau}= \int_{0}^{1} f (x) \phi ( x , \tau ) \,dx\) for the expected value of a regular function f(x) at time τ. Hence,

$$\begin{aligned} \frac{d}{d\tau} \bigl\langle f ( x ) \bigr\rangle _\tau = & \biggl\langle x ( 1- x ) \frac{\partial^2 f (x)}{\partial x^2}\biggr\rangle _\tau -S \biggl\langle x ( 1- x ) \frac{\partial f (x)}{\partial x} \biggr\rangle _\tau \\ &{} + C \bigl\langle x ( 1- x ) f ( x ) \bigr\rangle _\tau - \bar{C} ( \tau ) \bigl\langle f (x) \bigr\rangle _\tau \end{aligned}$$
(34)

with \(\bar{C} ( \tau ) = C \langle x ( 1- x ) \rangle_{\tau}\). The idea is to choose a function f(x) such that the first three terms of the right-hand side of Eq. (34) cancel out. This choice depends on the value of the parameter ΓCS 2/4, as discussed next. We note that Γ<π 2 in the nonergodic regime.

Region 0<Γ<π 2

In this region we choose \(f (x) = e^{S x/2} \sin ( \sqrt{\varGamma} x + \theta ) \), where θ is an arbitrary constant. Then Eq. (34) rewrites

$$ \frac{d}{d\tau} \bigl\langle e^{S x/2} \sin ( \sqrt{\varGamma} x + \theta )\bigr\rangle _\tau = - \bar{C} ( \tau ) \bigl\langle e^{S x/2} \sin ( \sqrt{\varGamma} x + \theta ) \bigr\rangle _\tau, $$
(35)

which has the formal solution

$$ \frac{ \langle e^{S x/2} \sin ( \sqrt{\varGamma} x + \theta ) \rangle_\tau}{ \langle e^{S x/2} \sin ( \sqrt{\varGamma} x + \theta ) \rangle_0} = \exp \biggl[ - \int_0^\tau \bar{C} ( \eta ) d \eta \biggr] . $$
(36)

As the right-hand side of this equation does not depend on θ, neither does the ratio in its left-hand side. Hence, equating the ratios evaluated at θ=0 and \(\theta = \pi/2 - \sqrt{\varGamma}/2\) yields

$$ \frac{ \langle e^{S x/2} \sin ( \sqrt{\varGamma} x ) \rangle_\tau}{ \langle e^{S x/2} \cos [ \sqrt{\varGamma} ( x - 1/2 ) ] \rangle_\tau} = \frac{ \langle e^{S x/2} \sin ( \sqrt{\varGamma} x ) \rangle_0}{ \langle e^{S x/2} \cos [ \sqrt{\varGamma} ( x - 1/2 ) ] \rangle_0} . $$
(37)

In the limit as τ→∞ we have

$$ \bigl\langle e^{S x/2} \sin ( \sqrt{\varGamma} x ) \bigr\rangle _\infty = A_1 e^{S/2} \sin ( \sqrt{\varGamma} ) $$
(38)

and

$$\begin{aligned} \bigl\langle e^{S x/2} \cos \bigl[ \sqrt{\varGamma} ( x - 1/2 ) \bigr]\bigr\rangle _\infty = & \bigl( A_0 + A_1 e^{S/2} \bigr) \cos (\sqrt{\varGamma}/2 ) \\ = & \bigl[ 1 + A_1 \bigl( e^{S/2} - 1 \bigr) \bigr] \cos (\sqrt{\varGamma}/2 ), \end{aligned}$$
(39)

which leads to

$$ A_1 = \frac{1}{1 + e^{S/2} ( \varXi_0 -1 )}, $$
(40)

where

$$ \varXi_0 = 2 \sin (\sqrt{\varGamma}/2 ) \frac { \langle e^{S x/2} \cos [ \sqrt{\varGamma} ( x - 1/2 ) ] \rangle_0}{ \langle e^{S x/2} \sin ( \sqrt{\varGamma} x ) \rangle_0} . $$
(41)

In the limit as Γπ 2, we have Ξ 0→2 regardless of the initial probability density ϕ(x,0), and so \(A_{1} \to A_{1}^{c} = 1/ (1 + e^{S/2} )\). In addition, for the initial probability density ϕ(x,0)=δ(x−1/2) used to calculate \(\bar{x}\) at M=0 in Fig. 4, the dependence on Γ (and hence on C) disappears, and so \(A_{1} = A_{1}^{c}\).

Region −S 2/4<Γ<0

In this region the choice f(x)=e Sx/2(e ux+θe ux) with \(u = \sqrt{-\varGamma}\) and θ arbitrary leads to the canceling of the first three terms of the right-hand side of Eq. (34), yielding

$$ \frac{ \langle e^{S x/2} ( e^{ux} + \theta e^{-ux} ) \rangle_\tau}{ \langle e^{S x/2} ( e^{ux} + \theta e^{-ux} ) \rangle_0} = \exp \biggl[ - \int_0^\tau\bar{C} ( \eta ) \,d \eta \biggr] . $$
(42)

The same argument used in the analysis of the Γ>0 region allows us to equate the ratio that appear in the left-hand side of this equation for θ=−1 and θ=0,

$$ \frac{ \langle e^{S x/2} \sinh ( u x ) \rangle_\tau}{ \langle e^{S x/2 +ux} \rangle_\tau} = \frac{ \langle e^{S x/2} \sinh ( u x ) \rangle_0}{ \langle e^{S x/2 + ux} \rangle_0} . $$
(43)

Finally, taking the limit as τ→∞ yields

$$ A_1 = \frac{1}{1 + e^{S/2} [ \varOmega_0\sinh ( u ) -e^u ]}, $$
(44)

where

$$ \varOmega_0 = \frac { \langle e^{S x/2 + ux } \rangle_0}{ \langle e^{S x/2} \sinh ( u x ) \rangle_0} . $$
(45)

By taking the limit as u→0 we can easily verify that A 1 is continuous at the boundary of the two regions. In addition, in the limit as C→0, i.e., uS/2, we recover the classical formula for the fixation of an allele with selective disadvantage S (Crow and Kimura 1970),

$$ A_1 = \frac{ \langle e^{Sx} \rangle_0 - 1}{e^S - 1 }. $$
(46)

Similarly to our finding in the analysis of the previous region, the initial probability density ϕ(x,0)=δ(x−1/2) yields A 1=1/(1+e S/2) regardless of the value of C, as shown in Fig. 4.

Appendix B: Critical Line for the Limit as M→0

Setting M=0 in Eq. (25) yields

$$ z'_c + z^2_c - S z_c +C=0 $$
(47)

with the condition

$$ z_c ( 1 )=0 . $$
(48)

In the region CS 2/4>0 its solution is

$$ z_c (x )= \frac{S}{2} -\gamma \tan ( \gamma x + \theta ), $$
(49)

where \(\gamma= \sqrt{C- S^{2} /4}\), and θ=θ(γ,S) is fixed by condition (48) as

$$ \frac{S}{2} -\gamma \tan ( \gamma + \theta )=0 . $$
(50)

We note that the critical value C c (S) is in the region CS 2/4>0 (see Fig. 5). To evaluate Eq. (28), we use the equality

$$ \exp ( -Sx + y_c ) = \frac{\cos ( \gamma x + \theta )}{\cos (\theta )} \; \exp ( -S x/2 ), $$
(51)

which follows directly from the definition \(y_{c} (x) = \int_{0}^{x} z_{c} ( \xi ) d \xi\) with z c given by (49). Now the integrals in Eq. (28) can be readily evaluated, yielding

$$ \frac{S}{2} -\gamma \tan ( \theta )= \frac{ \gamma [ e^{-\frac{S}{2}}\sin ( \gamma+ \theta ) -\sin ( \theta ) ] - \frac{S}{2} [ e^{-\frac{S}{2}}\cos (\gamma+ \theta )-\cos ( \theta ) ] }{ e^{-\frac{S}{2}}\cos (\gamma+ \theta )} . $$
(52)

This equation can be further simplified using the equalities \(\sin ( \gamma + \theta )= S/ ( 2\sqrt{C} )\) and \(\cos (\gamma + \theta )=\gamma/\sqrt{C}\), which follow from Eq. (50). The final result is simply

$$ \gamma = \sqrt{C} e^{\frac{S}{2}}\cos ( \theta ) . $$
(53)

Finally, we rewrite Eq. (50) as

$$ \theta = \arctan \biggl( \frac{S}{2\gamma} \biggr) - \gamma $$
(54)

in order to make clear that Eq. (53) yields a relation C=C c (S), which is the critical line M→0 depicted in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontanari, J.F., Serva, M. Effect of Migration in a Diffusion Model for Template Coexistence in Protocells. Bull Math Biol 76, 654–672 (2014). https://doi.org/10.1007/s11538-014-9937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9937-7

Keywords

Navigation