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                    Abstract
This paper is an extension of a previous work which proposes a non-phenomenological model of population growth that is based on the interactions among the individuals of a population. In addition to what had already been studied—that the individuals interact competitively—in the present work it is also considered that the individuals interact cooperatively. As a consequence of this new consideration, a richer dynamics is observed. For instance, besides getting the population models already reached from the original version of the model (as the Malthus, Verhulst, Gompertz, Richards, Bertalanffy and power-law growth models), the new formulation also reaches the von Foerster growth model and also a regime of divergence of the population at a finite time. An agent-based model is also presented in order to give support to the analytical results. Moreover, this new approach of the model explains the Allee effect as an emergent behavior of the cooperative and competitive interactions among the individuals. The Allee effect is the characteristic of some populations of increasing the population growth rate in a small-sized population. Whereas the models presented in the literature explain the Allee effect with phenomenological ideas, the model presented here explains this effect by the interactions between the individuals. The model is tested with empirical data to justify its formulation. Another interesting macroscopic emergent behavior from the model proposed is the observation of a regime of population divergence at a finite time. It is interesting that this characteristic is observed in humanity’s global population growth. It is shown that in a regime of cooperation, the model fits very well to the human population growth data from 1000 AD to nowadays.
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	This consideration of the interaction field when \(r<r_0\) differs from the MLBI model, but do not change its qualitative aspect. Moreover, it brings more generality to the model.





References
	Allee WC et al (1949) Principles of animal ecology. Saunders, London

	Arruda T-J, González R-S, Terçariol C-A-S, Martinez A-S (2008) Arithmetical and geometrical means of generalized logarithmic and exponential functions: generalized sum and product operators. Phys Lett A 372:2578

	Ausloos Marcel (2012) Another analytic view about quantifying social forces. arXiv:1208.6179, Submitted on 30 (Aug 2012)

	Barberis L, Condat CA, Romãn P (2011) Vector growth universalities. Chaos, Solitons & Fractals 44:1100–1105
Article 
    MATH 
    
                    Google Scholar 
                

	Bettencourt LMA et al (2007) Growth, innovation, scaling, and the pace of life in cities. PNAS, 104(17):7301–7306

	Boccara N (2003) Modeling complex systems (graduate texts in contemporary physics). Springer, Berlin

                    Google Scholar 
                

	Cabella BCT, Martinez AS, Ribeiro F (2011) Data collapse, scaling functions, and analytical solutions of generalized growth models. Phys Rev E 83:061902
Article 
    
                    Google Scholar 
                

	Cabella BCT, Ribeiro F, Martinez AS (2012) Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model. Phys A 391:1281–1286
Article 
    
                    Google Scholar 
                

	Chester M (2011) A law of nature? Open J Ecol 1(3):77–84
Article 
    
                    Google Scholar 
                

	Courchamp F, Clutton-Brock T and Grenfell B (1999) Inverse density dependence and the Allee effect. Tree 14(10)

	d’Onofrio A. Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos, Solitons & Fractals (2009). doi:10.1016/j.chaos.2008.04.014
                        

	dos Santos LS, Cabella BCT, Martinez AS (2014) Generalized Allee effect model. Theory Biosci 133:117–124

	Drasdo D, Hohme S (2003) Individual-based approaches to birth and death in avascular tumors. Math Comput Model 37:1163–1175

	Edelstein-Keshet L (2005) Mathematical models in biology (classics in applied mathematics), 1st edn. SIAM: Society for Industrial and Applied Mathematics, Philadelphia
Book 
    
                    Google Scholar 
                

	Falconer KJ (1990) Fractal geometry: mathematical foundations and applications. Wiley, New York
MATH 
    
                    Google Scholar 
                

	Freyer JP, Sutherland RM (1985) A reduction in the in situ rates of oxygen and glucose consumption of cells in EMTG/Ro spheroids during growth. J Cell Physiol 124:516–524
Article 
    
                    Google Scholar 
                

	Ghazoul J, Liston KA, Boyle TJB (1998) Disturbance-induced density dependent seed set in Shorea siamensis (Dipterocarpaceae), a tropical forest tree. J Ecol 86:462–473
Article 
    
                    Google Scholar 
                

	Ginzburg LR (1972) The analogies of the “free motion” and “force” concepts in population theory. In: Ratner VA (ed) Studies on theoretical genetics. Academy of Sciences of the USSR, Novosibirsk, pp 65–85

                    Google Scholar 
                

	Gompertz R (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585
Article 
    
                    Google Scholar 
                

	Gregorczyk A (1998) Richards plant growth model. J Agron Crop Sci 181(4):243–247
Article 
    
                    Google Scholar 
                

	Gregory SD, Bradshaw CJA, Brook BW, Courchamp FC (2009) Limited evidence for the demographic Allee effect from numerous species across taxa. Ecology 91:2151–2161
Article 
    
                    Google Scholar 
                

	Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151:487–496
Article 
    
                    Google Scholar 
                

	Guiot C, Degiorgis PG, Delsanto PP, Gabriele P, Deisboeck TS (2003) Does tumor growth follow a “universal law”? J Theor Biol 225(2):147–151
Article 
    MathSciNet 
    
                    Google Scholar 
                

	Haybittle JL (1998) The use of the Gompertz function to relate changes in life expectancy to the standardized mortality ratio. Int J Epidemiol 27(5):885–889
Article 
    
                    Google Scholar 
                

	Kadanoff LP (2000) Statistical physics: statics,dynamics and remormalization. World Scientific, Singapore
Book 
    
                    Google Scholar 
                

	Kohler TA, Gumerman GG (2000) Dynamics in human and primate societies. Oxford University Press, Oxford
MATH 
    
                    Google Scholar 
                

	Kuehn C, Siegmund S, Gross T (2011) On the dynamical analysis of evolution equations via generalized models. arXiv:1012.4340
                        

	Malthus TR (1798) An essay on the principle of population as it affects the future improvement of society. J. Johnson, London

	Martinez A-S, González R-S, Terçariol C-A-S (2008) Continuous growth models in terms of generalized logarithm and exponential functions. Phys A 387:5679

	Martinez A-S, González R-S, Espíndola A-L (2009) Generalized exponential function and discrete growth models. Phys A 388:2922

	Mitchell M (2011) Complexity: a guided tour. Oxford University Press, Oxford

                    Google Scholar 
                

	Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP (2002) A mean-field theory of cellular growth. Europhys Lett 59(6):923–928
Article 
    
                    Google Scholar 
                

	Murray JD (2002) Mathematical biology I: an introduction. Springer, New York
MATH 
    
                    Google Scholar 
                

	Ribeiro F, Cabella BCT, Martinez AS (2014) Richards-like two species population dynamics model. Theory Biosci 133:135–143. doi:10.1007/s12064-014-0205-z
                        
Article 
    
                    Google Scholar 
                

	Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10(2):290–301. doi:10.1093/jxb/10.2.290
                        

	Roll J et al (1997) Reproductive success increases with local density of conspecifics in a desert mustard (Lesquerella fendleri). Conserv Biol 11:738–746
Article 
    
                    Google Scholar 
                

	Savageau MA (1980) Growth equations: a general equation and a survey of special cases. Math Biosci 48:267–278
Article 
    MATH 
    MathSciNet 
    
                    Google Scholar 
                

	Sibly RM, Barker D, Denham MC, Hone J, Pagel M (2005) On the Regulation of populations of mammals, birds, fish, and insects. Science 309

	Solomon S (1999) Generalized Lotka-Volterra (GLV) models and generic emergence of scaling laws in stock markets. arXiv:cond-mat/9901250
                        

	Strzalka D (2009) Connections between von Foerster coalition growth model and Tsallis q-exponential. Acta Physica Polonica B, 40(1)

	Strzalka D, Grabowski F (2008) Towards possible q-generalizations of the Malthus and Verhulst growth models. Physica A 387(11):2511–2518
Article 
    
                    Google Scholar 
                

	Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479
Article 
    MATH 
    MathSciNet 
    
                    Google Scholar 
                

	Tsallis C (1994) What are the numbers that experiments provide? J Química Nova 17:468

                    Google Scholar 
                

	Verhulst PF (1845) Recherches mathematiques sur la loi d’accroissement de la population. Nouveaux memoires de l’Academie Royale des Sciences et Belles Lettres de Bruxelles 18:1–38

                    Google Scholar 
                

	Verhulst PF (1847) Deuxieme memoire sur la loi d’accroissement de la pop- ulation. Nouveaux memoires de l’Academie Royale des Sciences et Belles Lettres de Bruxelles 20:1–32

                    Google Scholar 
                

	von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32(3):217–231
Article 
    
                    Google Scholar 
                

	von Bertalanffy L (1960) Principles and theory of growth. In: Nowinski WW (ed) Fundamental aspects of normal and malignant growth. Elsevier, New York, pp 137–259

                    Google Scholar 
                

	Von Foerster H, Mora PM, Amiot WL (1960) Doomsday: Friday, 13 november, AD 2026 at this date human population will approach infinite if it grows as it has grown in the last two millenia. Science 132

	West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature, 413:628–631

	West GB et al (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122. doi:10.1126/science.276.5309.122
                        
Article 
    
                    Google Scholar 
                

	Yeomans JM (1992) Statistical mechanics of phase transitions. Oxford University Press, Oxford

                    Google Scholar 
                


Download references




Acknowledgments
I would like to acknowledge the useful and stimulating discussions with Alexandre Souto Martinez and Brenno Troca Cabella. I would like to acknowledge also the support from CNPq (151057/2009-5).


Author information
Authors and Affiliations
	Departamento de Física (DFI), Universidade Federal de Lavras (UFLA), Caixa Postal 3037, Lavras, Minas Gerais, 37200-000, Brazil
Fabiano L. Ribeiro


Authors	Fabiano L. RibeiroView author publications
You can also search for this author in
                        PubMed Google Scholar





Corresponding author
Correspondence to
                Fabiano L. Ribeiro.


Appendices
Appendix 1: The Generalized Logarithm and Exponential Function
In this appendix, one presents the generalizations of the logarithmic and exponential functions and some of their properties. The introduction of the functions is shown to be very useful for dealing with the mathematical representation of the population growth model that is presented in this work.
The \(\tilde{q}\)-logarithm function is defined as
$$\begin{aligned} \ln _{\tilde{q}}(x) = \lim _{\tilde{q}' \rightarrow \tilde{q}}\frac{x^{\tilde{q}'} -1 }{\tilde{q}'} = \int _1^x \frac{dt}{t^{1-\tilde{q}}} \; , \end{aligned}$$

                    (33)
                

which is the area of the crooked hyperbole and is controlled by \(\tilde{q}\). This equation is a generalization of the natural logarithm function, which is reproduced when \(\tilde{q} = 0\). This function was introduced in the context of nonextensive statistical mechanics Tsallis (1988; 1994) and was studied recently by Arruda et al. (2008), Martinez et al. (2008) and Martinez et al. (2009). Some of the properties of this function are as follows: for \(\tilde{q} < 0, \ln _{\tilde{q}}(\infty )=-1/\tilde{q}\); for \(\tilde{q} > 0, \ln _{\tilde{q}}(0)=-1/\tilde{q}\); for all \(\tilde{q}, \ln _{\tilde{q}}(1)=0\); \(\ln _{\tilde{q}}(x^{-1}) = - \ln _{-\tilde{q}}(x)\); \(\hbox {d} \ln _{\tilde{q}}(x)/\hbox {d}x = x^{\tilde{q}-1}\). Moreover, the \(\tilde{q}\)-logarithm is a function: convex for \(\tilde{q}>1\), linear for \(\tilde{q}=1\), and concave for \(\tilde{q}<1\).
The inverse of the \(\tilde{q}\)-logarithm function is the \(\tilde{q}\)-exponential function, which is by
$$\begin{aligned} \hbox {e}_{\tilde{q}}(x) = \left\{ \begin{array}{ll} \lim _{\tilde{q}^{'} \rightarrow \tilde{q}} (1+ \tilde{q}^{'} x)^{ \frac{1}{ \tilde{q}^{'}} } &{},\quad {\text { if }}\,\tilde{q}x > -1 \\ 0,&{}\quad {\text {otherwise}} \end{array} \right. . \end{aligned}$$

                    (34)
                

Some properties of this function are as follows: \(\hbox {e}_{\tilde{q}}(0)=1\), for all \(\tilde{q}\); \( \left[ \hbox {e}_{\tilde{q}}(x) \right] ^a = \hbox {e}_{\tilde{q}/a}(ax)\), where \(a\) is a constant; for \(a=-1\), one has \(1/\hbox {e}_{\tilde{q}}(x) = \hbox {e}_{-\tilde{q}}(-x)\). Moreover, the \(\tilde{q}\)-exponential is a function: convex for \(\tilde{q}<1\); linear for \(\tilde{q}=1\); concave for \(\tilde{q}>1\).
Appendix 2: A Detailed Calculus of \(I_i^{(l)}\)
                        
In this appendix, one presents a detailed calculus for the intensity of the interaction felt by a single individual \(i\) from the other individuals of the population, which is represented by \(I_i^{(l)}\) (see Sect. 2). One follows Mombach et al. (2002) to show that this intensity is independent of the individual; that is, it is the same for all individuals of the population and depends only on the size of the population. More specifically, one shows that \(I_i^{(l)} = I^{(l)}(N)\) regardless of \(i\).
First, from the Sect. 2 one has
$$\begin{aligned} I_i^{(l)} = \sum _{j \in r_{ij} \ge r_0} \frac{\left( 1-\delta _{ij}\right) }{|\mathbf {r}_i-\mathbf {r}_j |^{\gamma _l}} + \sum _{j \in r_{ij} < r_0} \left( 1-\delta _{ij}\right) , \end{aligned}$$

                    (35)
                

where \(\delta _{ij}\), which is the Kronecker’s delta, was introduced to avoid the restriction in the sum. Moreover, \(\mathbf {r}_i\) and \(\mathbf {r}_j\) represent the position vectors of the individuals \(i\) and \(j\), respectively, and consequently \(r_{ij} = |\mathbf {r}_i - \mathbf {r}_j |\) is the distance between them. Introducing the property
$$\begin{aligned} f(\mathbf {r}_0) = \int _{V_{D}} \hbox {d}^D\mathbf {r} \delta (\mathbf {r} - \mathbf {r}_0) f(\mathbf {r}), \end{aligned}$$

                    (36)
                

where \(\delta (\cdots )\) is the Dirac’s delta, the expression (35) becomes
$$\begin{aligned} I_i^{(l)}&= \sum _{j=1}^N (1-\delta _{ij}) \Big [ \int _{V_{D} \in r \ge r_0} \hbox {d}^D\mathbf {r} \delta \Big ( \mathbf {r} - (\mathbf {r}_j - \mathbf {r}_i)\Big ) |\mathbf {r}|^{- \gamma _l} \nonumber \\&+ \int _{V_{D} \in r<r_0} \hbox {d}^D\mathbf {r} \delta \Big ( \mathbf {r} - (\mathbf {r}_j - \mathbf {r}_i)\Big ) \Big ] . \end{aligned}$$

                    (37)
                

In the last two expressions, was introduced: \(D (=1,2, 3)\), which is the Euclidean dimension in which the population is embedded, and \(V_{D}\), which is the total (hyper) volume (in \(D\) dimensions) that contains the population. The form represented in (37) was obtained by the variable substitution \(\mathbf {r}_j - \mathbf {r}_i\) by \(\mathbf {r}\), using Dirac’s delta.
Some algebraic manipulation and the introduction of \(r\equiv |\mathbf {r}|\) allows to write
$$\begin{aligned} I_i^{(l)}&= \int _{V_{D} \in r \ge r_0}\frac{\hbox {d}^D \mathbf {r} }{\mathbf {r}^{\gamma _l}} \sum _{j \ne i} \delta \Big ( \mathbf {r} - (\mathbf {r}_j - \mathbf {r}_i)\Big ) + \nonumber \\&\int _{V_{D} \in r< r_0} \hbox {d}^D \mathbf {r} \sum _{j \ne i} \delta \Big ( \mathbf {r} - (\mathbf {r}_j - \mathbf {r}_i)\Big ) . \end{aligned}$$

                    (38)
                

Note that \(dN(\mathbf {r})\equiv \hbox {d}^D \mathbf {r} \sum _{j \ne i} \delta \Big ( \mathbf {r} - (\mathbf {r}_j - \mathbf {r}_i)\Big )\) is the number of individuals which is at the element of (hipper)volume \(d^D\mathbf {r}\) at the distance \(\mathbf {r}\) from the individual \(i\), localized at \(\mathbf {r}_i\). In this way, the density of individuals at \(\mathbf {r}_i + \mathbf {r}\) (neighbors of \(i\)), that is \(\rho (\mathbf {r}_i~+~\mathbf {r}) =\hbox {d}N(\mathbf {r})/\hbox {d}^D \mathbf {r}\), can be written as
$$\begin{aligned} \rho (\mathbf {r}_i + \mathbf {r}) = \sum _{j \ne i} \delta \Big ( \mathbf {r} - (\mathbf {r}_j -\mathbf {r}_i)\Big ). \end{aligned}$$

                    (39)
                

The density of individuals can also be thought of in terms of the scale of the system (in conformity with Falconer 1990). The volume of the system grows in the form \(V_{D} \sim L^D\), where \(L\) is the typical size of the system. However, the number of individuals grows as the form \(N \sim L^{D_{f}}\), where \(D_{f}\) is the fractal dimension formed by the spatial structure of the population. By considering \(r\), which is the absolute distance from \(i\), as a typical distance of the system, one can say that the density of individuals (\(V_{D}/N\)) has the form
$$\begin{aligned} \rho (\mathbf {r}_i + \mathbf {r}) \equiv \rho (r) = \rho _0 \frac{r^{D_{f}}}{r^D}, \end{aligned}$$

                    (40)
                

where \(\rho _0\) is a constant which is related to the density of individuals. In fact, if \(D=D_{f}\) and the population is homogeneously distributed, then \(\rho _0\) is the usual density of individuals.
Using results (40) and (39) in (38), one obtains
$$\begin{aligned} I_i^{(l)} = \rho _0 \int _{V_{D} \in r \ge r_0}d^D \mathbf {r} r^{D_{f} -D -\gamma _l} + \rho _0 \int _{V_{D} \in r < r_0}d^D \mathbf {r} r^{D_{f} -D } . \end{aligned}$$

                    (41)
                

Note that the integration argument does not depend on the angular coordinates. Thus, one can write \(\hbox {d}^D \mathbf {r}=~r^{D-1}\hbox {d}r \hbox {d}\Omega _{D}\), where \(\hbox {d}\Omega _{D}\) is the solid angle, which implies
$$\begin{aligned} I_i^{(l)} = \rho _0\frac{\Omega _{D}}{D_{f}} \int _{0}^{r_0=1} \hbox {d}r r^{D_{f} -1} +\rho _0 \Omega _{D} \int _{r_0=1}^{R_{\hbox {max}}} \hbox {d}r r^{D_{f} -1-\gamma _l}, \end{aligned}$$

                    (42)
                

where \(\Omega _{D} = \int \hbox {d}\Omega _{D}\). Note that the only term that depends on the Euclidean dimension is the solid angle, and \(\Omega _{D}\) assumes the following values according to these tree possibilities: \(\Omega _1 = 2\); \(\Omega _2 = 2\pi \); \(\Omega _3 = 4\pi \). By introducing the constant \(\omega _{D} = \rho _0 \Omega _{D}\), which depends only on \(D\), one obtains
$$\begin{aligned} I^{(l)} \equiv I_i^{(l)} = \omega _{D} \left( \frac{R_{\hbox {max}}^{D_{f} - \gamma _l} -1 }{D_{f} - \gamma _l}\right) + \frac{\omega _{D}}{D_{f}} \end{aligned}$$

                    (43)
                

Thus, \(I_i^{(l)}\) does not depend on the label \(i\) anymore. As a result, one can say that \(I_i^{(l)} = I^{(l)}\) regardless of \(i\).
Furthermore, one can introduce the total number of individuals in the relation above by the following thinking. The total number of individuals in the population can be determined by the integral
$$\begin{aligned} N = \int \hbox {d}N(r) =\int _{V_{D}}\hbox {d}^D\mathbf {r} \rho (r). \end{aligned}$$

                    (44)
                

Using Eq. (40) and integrating the solid angle, one obtains
$$\begin{aligned} N&= \omega _{D} \int _{0}^{R_{\hbox {max}}} r^{D_{f}-1}\hbox {d}r \end{aligned}$$

                    (45)
                


                           $$\begin{aligned}&= \omega _{D} \int _{0}^{r_0} r^{D_{f}-1} + \omega _{D} \int _{r_0}^{R_{\hbox {max}}} r^{D_{f}-1} \end{aligned}$$

                    (46)
                


                           $$\begin{aligned}&= \omega _{D} \frac{r_0^{D_{f}}}{D_{f}} + \omega _{D} \frac{R_{\hbox {max}}^{D_{f}}}{D_{f}} - \omega _{D} \frac{r_0^{D_{f}}}{D_{f}} . \end{aligned}$$

                    (47)
                

Note that the first term on the right in (46) and (47) can be zero (indicating the absence of individuals) or 1 (indicating the presence of a single individual). These values are possible because the ratio of the individual is \(r_0\), and hence, there can be at most one individual inside the region that consists of the length between \(0\) and \(r_0\). Thus, for \(r_0=1, \omega _d/D_{f} \sim 1\). \(R_{\hbox {max}}\) can be obtained from (47), which is a function of \(N\) according to
$$\begin{aligned} R_{\hbox {max}} = \left( \frac{D_{f}}{\omega _{D}} N \right) ^{\frac{1}{D_{f}}}. \end{aligned}$$

                    (48)
                

Returning to relation (43), one finds
$$\begin{aligned} I^{(l)} = I^{(l)}(N) = \frac{\omega _{D}}{D_{f}(1- \frac{\gamma _l}{D_{f}})}\left[ \left( \frac{D_{f}}{\omega _{D}}N \right) ^{1- \frac{\gamma _l}{D_{f}}} -1 \right] + \frac{\omega _{D}}{D_{f}}. \end{aligned}$$

                    (49)
                

By introducing \(\tilde{q}_l=1- \gamma _l/D_{f}\) and the properties of the generalized logarithm (Appendix 1), one obtains
$$\begin{aligned} I^{(l)} = I^{(l)}(N| D, \tilde{q}_l) = \frac{\omega _{D}}{D_{f}} \ln _{\tilde{q}_l} \left( \frac{D_{f}}{\omega _{D}}N \right) + \frac{\omega _{D}}{D_{f}}. \end{aligned}$$

                    (50)
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