Skip to main content
Log in

A Validated Mathematical Model of Tumor Growth Including Tumor–Host Interaction, Cell-Mediated Immune Response and Chemotherapy

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. The tumor–immune and the tumor–host interactions are characterized to reproduce experimental results. A thorough dynamical analysis of the model is carried out, showing its capability to explain theoretical and empirical knowledge about tumor development. A chemotherapy treatment reproducing different experiments is also introduced. We believe that this simple model can serve as a foundation for the development of more complicated and specific cancer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18:593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Couzin-Frankel J (2013) Cancer immunotherapy. Science 342:1432–1433

    Article  Google Scholar 

  • De Pillis LG, Radunskaya A (2003) The dynamics of an optimally controlled tumor model: a case study. Math Comput Model 37:1221–1244

    Article  MATH  Google Scholar 

  • De Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res 65:235–252

    Google Scholar 

  • De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modelling, applications and biological interpretations. J Theor Biol 238:841–862

    Article  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM, Rauelt DG (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature 413:165–171

    Article  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850854

    Article  Google Scholar 

  • Ferreira SC Jr, Martins ML, Vilela MJ (2002) Reaction-diffusion model for the growth of avascular tumor. Phys Rev E 67:051914

    Article  MathSciNet  Google Scholar 

  • Gardner SN (1996) A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and nonspecific drugs. Cancer Res 60:1417–1425

    Google Scholar 

  • Gardner SM (2002) Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol 214:181–207

    Article  Google Scholar 

  • Gatenby RA, Gawlinsky ET (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56:5475–5753

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) Hallmarks of cancer. Cell 100:5770

    Article  Google Scholar 

  • Hiramoto RN, Ghanta VK (1974) Chemotherapy and rate of kill of tumor cells in a mouse plasmacytome. Cancer Res 34:1738–1742

    Google Scholar 

  • Ideta AM, Tanaka G, Takeuchi T, Aihara K (2008) A mathematical model of intermittent androgen suppression for prostate cancer. J Nonlinear Sci 18:593–614

    Article  MATH  Google Scholar 

  • Kirschner D, Panetta JC (1988) Modelling immunotherapy of the tumor–immune interaction. J Math Biol 37:235–252

    Article  Google Scholar 

  • Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56:295321

    Article  Google Scholar 

  • Lavi O, Gottesman MM, Levy D (2012) The dynamics of drug resistance: a mathematical perspective. Drug Resist Updat 15:90–97

    Article  Google Scholar 

  • Mallet DG, De Pillis LG (2006) A cellular automata model of tumor–immune system interactions. J Theor Biol 239:334–350

    Article  Google Scholar 

  • Nowak MA (1992) What is quasispecies? Trends Ecol Evol 7:118–121

    Article  Google Scholar 

  • Olumi AF, Gary DG, Hayward SW, Carrol PR, Tlsty RD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    Google Scholar 

  • Panetta JC, Adam J (1995) A mathematical model of cycle-specific chemotherapy. Math Comput Model 22:67–82

    Article  MathSciNet  MATH  Google Scholar 

  • Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen MT, Ponzoni M (2006) Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 66:10073–10082

    Article  Google Scholar 

  • Pinho STP, Freedman HI, Nani F (2002) A chemotherapy model for the treatment of cancer with metastasis. Math Comput Model 36:773–803

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitivity under Project Number FIS2013-40653-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. F. Sanjuán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, Á.G., Seoane, J.M. & Sanjuán, M.A.F. A Validated Mathematical Model of Tumor Growth Including Tumor–Host Interaction, Cell-Mediated Immune Response and Chemotherapy. Bull Math Biol 76, 2884–2906 (2014). https://doi.org/10.1007/s11538-014-0037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0037-5

Keywords

Navigation