Skip to main content
Log in

New Insight into Wolbachia Epidemiology: Its Varying Incidence During the Host Life Cycle Can Alter Bacteria Spread

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Wolbachia is an obligate endosymbiont whose spread depends mainly on its capacity to alter host reproduction by, for instance, cytoplasmic incompatibility. Several mathematical models have been developed to explain the dynamics of bacterial spread, because of its applied interest. However, some aspects of the host’s and bacterium’s biology have not been considered in modelling: for instance, changes in Wolbachia proportions during the host’s life cycle have been observed in several species, including Drosophila sp., Nasonia sp. and Aedes sp. (Diptera), but also in the grasshopper Chorthippus parallelus (Orthoptera), the species studied in this article. These changes influence the proportion of incompatible crosses and, consequently, infection prevalence in subsequent generations. In this paper, we are interested in ascertaining whether these changes in the infection proportions during the host’s life cycle can influence the dynamics of the spread of these bacteria. We have examined its consequences using a mathematical model to predict the evolution of Wolbachia infection frequencies. The simulations were validated by experimental field data from C. parallelus. The main outcome is that those changes above mentioned might affect long-term infection spread, with possible consequences for the current distribution of Wolbachia and the way it affects its host’s reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arthofer W, Riegler M, Schneider D, Krammer M, Miller WJ, Stauffer C (2009) Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol 18:3816–3830. doi:10.1111/j.1365-294X.2009.04321.x

    Article  Google Scholar 

  • Atyame CM, Labbé P, Dumas E, Milesi P, Charlat S, Fort P, Weill M (2014) Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. Plos One. doi:10.1371/journal.pone.0087336

  • Bella JL, Martínez-Rodríguez P, Arroyo-Yebras F, Bernal A, Sarasa J, Fernández-Calvín B, Mason PL, Zabal-Aguirre M (2010) Wolbachia infection in the Chorthippus parallelus hybrid zone: evidence for its role as a reproductive barrier. J Orthopt Res 19(2):205–212

    Article  Google Scholar 

  • Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PloS One 6(12):e29106

    Article  Google Scholar 

  • Callaini G, Dallai R, Riparbelli MG (1997) Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 110(2):271–280

    Google Scholar 

  • Clancy DJ, Hoffmann AA (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 86(1):13–24

    Article  Google Scholar 

  • Dillon RJ, Webster G, Weightman AJ, Dillon VM, Blanford S, Charnley AK (2008) Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. J Invert Pathol 97(3):265–272

    Article  Google Scholar 

  • Dobson SL (2004) Evolution of Wolbachia cytoplasmic incompatibility types. Evolution 58(10):2156–2166

    Article  MathSciNet  Google Scholar 

  • Egas M, Vala F, Breeuwer JAJ (2002) On the evolution of cytoplasmic incompatibility in haplodiploid species. Evolution 56(6):1101–1109

    Article  Google Scholar 

  • Engelstaedter J, Hammerstein P, Hurst GDD (2007) The evolution of endosymbiont density in doubly infected host species. J Evol Biol 20(2):685–695

    Article  Google Scholar 

  • Frank SA (1998) Dynamics of cytoplasmic incompatibility with multiple Wolbachia infections. J Theor Biol 192(2):213–218

    Article  Google Scholar 

  • Haygood R, Turelli M (2009) Evolution of incompatibility-inducing microbes in subdivided host populations. Evolution 63(2):432–447

    Article  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. Fems Microbiol Lett 281:215–220

    Article  Google Scholar 

  • Hoffmann A, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill SL, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction, vol 42–80. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476(7361):454–457

    Article  Google Scholar 

  • Hurst GDD, Jiggins FM, Robinson SJW (2001) What causes inefficient transmission of male-killing Wolbachia in Drosophila? Heredity 87:220–226

    Article  Google Scholar 

  • Killen GF, Barillas-Mury C, Thomas M (2013) Modulating malaria with Wolbachia. Nat Med 19(8):974–975

    Article  Google Scholar 

  • Kittayapong P, Mongkalangoon P, Baimai V, O’Neill SL (2002) Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity 88:270–274

    Article  Google Scholar 

  • Koehncke A, Telschow A, Werren JH, Hammerstein P (2009) Life and death of an influential passenger: Wolbachia and the evolution of CI-modifiers by their hosts. Plos One 4(2):e4425

    Article  Google Scholar 

  • Martínez P, Del Castillo P, Bella JL (2009) Cytological detection of Wolbachia in squashed and paraffin embedded insect tissues. Biotech Histochem 84(6):347–353

    Article  Google Scholar 

  • Martínez P (2013) Divergencia inducida por Wolbachia en la zona híbrida de Chorthippus parallelus (Orthoptera). PhD Thesis. Universidad Autónoma de Madrid

  • McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Nat Acad Sci 99(5):2918–2923

    Article  Google Scholar 

  • Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56

    Article  Google Scholar 

  • Mouton L, Henri H, Charif D, Bouletrea M, Vavre F (2007) Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett 3(2):210–213

    Article  Google Scholar 

  • Narita S, Nomura M, Kato Y, Yata O, Kageyama D (2007) Molecular phylogeography of two sibling species of Eurema butterflies. Genetica 131(3):241–253

    Article  Google Scholar 

  • Noda H, Koizumi Y, Zhang Q, Deng KJ (2001a) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31(6–7):727–737

    Article  Google Scholar 

  • Noda H, Miyoshi T, Zhang Q, Watanabe K, Deng K, Hoshizaki S (2001b) Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission. Mol Ecol 10(8):2101–2106

    Article  Google Scholar 

  • Ouedraogo RM, Cusson M, Goettel MS, Brodeur J (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. J Invert Pathol 82(2):103–109

    Article  Google Scholar 

  • Perrot-Minnot MJ, Guo LR, Werren JH (1996) Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis: effects on compatibility. Genetics 143(2):961–972

    Google Scholar 

  • Poinsot D, Montchamp-Moreau C, Mercot H (2000) Wolbachia segregation rate in Drosophila simulans naturally bi-infected cytoplasmic lineages. Heredity 85(2):191–198

    Article  Google Scholar 

  • Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the california Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165(4):2029–2038

    Google Scholar 

  • Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Ann Rev Genet 42:683–707

    Article  Google Scholar 

  • Springate S, Thomas MB (2005) Thermal biology of the meadow grasshopper, Chorthippus parallelus, and the implications for resistance to disease. Ecol Entomol 30(6):724–732

    Article  Google Scholar 

  • Tortosa P, Charlat S, Labbe P, Dehecq J-S, Barre H, Weill M (2010) Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? Plos One 5(3):e9700

    Article  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48(5):1500–1513

    Article  Google Scholar 

  • Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans dynamics and parameter estimates from natural-populations. Genetics 140(4):1319–1338

    Google Scholar 

  • Van Opijnen T, Breeuwer JAJ (1999) High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp Appl Acarol 23(11):871–881

    Article  Google Scholar 

  • Vautrin E, Charles S, Genieys S, Vavre F (2007) Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models. J Theor Biol 245(2):197–209

    Article  MathSciNet  Google Scholar 

  • Vavre F, Fouillet P, Fleury F (2003) Between- and within-host species selection on cytoplasmic incompatibility-inducing Wolbachia in haplodiploids. Evolution 57(2):421–427

    Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Ann Rev Entomol 42:587–609

    Article  Google Scholar 

  • Wiwatanaratanabutr S, Kittayapong P (2006) Effects of temephos and temperature on Wolbachia load and life history traits of Aedes aliblopictus. Med Vet Entomol 20(3):300–307

    Article  Google Scholar 

  • Zabal-Aguirre M, Arroyo F, Bella JL (2010) Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone. Heredity 104(2):174–184

    Article  Google Scholar 

  • Zabal-Aguirre M, Arroyo F, García-Hurtado J, de la Torre J, Hewitt GM, Bella JL (2014) Wolbachia effects in natural populations of Chorthippus parallelus from the Pyrenean hybrid zone. J Evol Biol 27(6):1136–1148. doi:10.1111/jeb.12389

    Article  Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. Plos One 7:e38544. doi:10.1371/journal.pone.0038544

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr Phil Mason (Glasgow University) for his useful advice and our anonymous referees for their helpful comments. We also thank Prof Juan Orellana for providing us with the mill for the DNA extraction. We are grateful to the Comunidad de Madrid and the Gobierno de Aragón for permission to collect grasshoppers. This work has been supported by Spanish Grants CGL2009-08380/BOS and CGL2012-35007 and the collaboration of Chromacell S.L. Rafael Granero-Belinchón is supported by Grants MTM2011-26696 from the Ministerio de Ciencia e Innovación (MICINN), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Martínez-Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Rodríguez, P., Granero-Belinchón, R., Arroyo-Yebras, F. et al. New Insight into Wolbachia Epidemiology: Its Varying Incidence During the Host Life Cycle Can Alter Bacteria Spread. Bull Math Biol 76, 2646–2663 (2014). https://doi.org/10.1007/s11538-014-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0029-5

Keywords

Navigation