Skip to main content

Advertisement

Log in

Bistability, Oscillations, and Traveling Waves in Frog Egg Extracts

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical modeling is a powerful tool for unraveling the complexities of the molecular regulatory networks underlying all aspects of cell physiology. To support this claim, we review our experiences modeling the cyclin-dependent kinase (CDK) network that controls events of the eukaryotic cell cycle. The model was derived from classic experiments on the biochemistry and molecular genetics of CDKs and their partner proteins. Because the dynamical properties of CDK activity depend in large part on positive and negative feedback loops in the regulatory network, it is difficult to predict its behavior by intuitive reasoning alone. Mathematical modeling is the correct tool for reliably determining the properties of the network in comparison with observed properties of dividing cells and for predicting the behavior of the control system under novel conditions. In this review, we describe six unexpected predictions of our 1993 model of the CDK control system in frog egg extracts and the remarkable experiments, performed much later, that verified all six predictions. The dynamical properties of the CDK network are consequences of feedback signals and ultrasensitive responses of regulatory proteins to CDK activity, and we describe the experimental evidence for the predicted ultrasensitivity. This case study illustrates the novel insights that mathematical modeling, analysis, and simulation can provide cell physiologists, and it points the way to a new “dynamical perspective” on molecular cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguda BD (1999) A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci USA 96(20):11352–11357

    Article  Google Scholar 

  • Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335

    Article  Google Scholar 

  • Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Milanesi L, Vanoni M, Klipp E, Alberghina L (2009) Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinform 10(Suppl 12):S16

    Article  Google Scholar 

  • Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64

    Article  MathSciNet  Google Scholar 

  • Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6:405

    Article  Google Scholar 

  • Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300(5894):706–709

    Article  Google Scholar 

  • Brummer A, Salazar C, Zinzalla V, Alberghina L, Hofer T (2010) Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication. PLoS Comput Biol 6(5):e1000783

    Article  MathSciNet  Google Scholar 

  • Chang JB, Ferrell JE Jr (2013) Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500(7464):603–607

    Article  Google Scholar 

  • Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8):3841–3862

    Article  Google Scholar 

  • Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–391

    Article  Google Scholar 

  • Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13(1):52–70

    Article  Google Scholar 

  • Dasso M, Newport JW (1990) Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61(5):811–823

    Article  Google Scholar 

  • Dunphy WG, Brizuela L, Beach D, Newport J (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54(3):423–431

    Article  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396

    Article  Google Scholar 

  • Faure A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D (2009) Modular logical modelling of the budding yeast cell cycle. Mol Biosyst 5(12):1787–1796

    Article  Google Scholar 

  • Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL (1990) Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60(3):487–494

    Article  Google Scholar 

  • Gautier J, Norbury C, Lohka M, Nurse P, Maller J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54(3):433–439

    Article  Google Scholar 

  • Gerard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA 106(51):21643–21648

    Article  Google Scholar 

  • Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98(4):1247–1255

    Article  Google Scholar 

  • Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 88(20):9107–9111

    Article  Google Scholar 

  • Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

    Article  MathSciNet  Google Scholar 

  • Gould KL, Moreno S, Tonks NK, Nurse P (1990) Complementation of the mitotic activator, p80cdc25, by a human protein-tyrosine phosphatase. Science 250(4987):1573–1576

    Article  Google Scholar 

  • Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc Natl Acad Sci USA 102(41):14617–14622

    Article  Google Scholar 

  • Hancioglu B, Tyson JJ (2012) A mathematical model of mitotic exit in budding yeast: the role of Polo kinase. PLoS One 7(2):e30810

    Article  Google Scholar 

  • Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA 66(2):352–359

    Article  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid B (1974) Genetic control of the cell division cycle in yeast. Science 183(4120):46–51

    Article  Google Scholar 

  • Hyver C, Le Guyader H (1990) MPF and cyclin: modelling of the cell cycle minimum oscillator. Biosystems 24(2):85–90

    Article  Google Scholar 

  • Kapuy O, Barik D, Sananes MR, Tyson JJ, Novak B (2009) Bistability by multiple phosphorylation of regulatory proteins. Prog Biophys Mol Biol 100(1–3):47–56

    Article  Google Scholar 

  • Kim SY, Ferrell JE Jr (2007) Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128(6):1133–1145

    Article  Google Scholar 

  • Kumagai A, Dunphy WG (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70(1):139–151

    Article  Google Scholar 

  • Lohka MJ, Hayes MK, Maller JL (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci USA 85(9):3009–3013

    Article  Google Scholar 

  • Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F (2009) Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459(7246):592–595

    Article  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145

    Article  Google Scholar 

  • Mitchison JM (2003) Growth during the cell cycle. Int Rev Cytol 226:165–258

    Article  Google Scholar 

  • Mueller PR, Coleman TR, Dunphy WG (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol Biol Cell 6(1):119–134

    Article  Google Scholar 

  • Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339(6222):275–280

    Article  Google Scholar 

  • Norel R, Agur Z (1991) A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 251(4997):1076–1078

    Article  Google Scholar 

  • Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos 11(1):277–286

    Article  MATH  Google Scholar 

  • Novak B, Tyson JJ (1993a) Modeling the cell division cycle: M-phase trigger, oscillations and size control. J Theor Biol 165:101–134

    Article  Google Scholar 

  • Novak B, Tyson JJ (1993b) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106:1153–1168

    Google Scholar 

  • Novak B, Tyson JJ (1995) Quantitative analysis of a molecular model of mitotic control in fission yeast. J Theor Biol 173:283–305

    Article  Google Scholar 

  • Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci USA 94(17):9147–9152

    Article  Google Scholar 

  • Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579

    Article  MathSciNet  Google Scholar 

  • Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9(7):724–728

    Article  Google Scholar 

  • Nurse P (1975) Genetic control of cell size at cell division in yeast. Nature 256(5518):547–551

    Article  Google Scholar 

  • Nurse P (1985) Cell cycle control genes in yeast. Trends Genet 1:51–55

    Article  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344(6266):503–508

    Article  Google Scholar 

  • Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100(1):71–78

    Article  Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178

    Article  Google Scholar 

  • Obeyesekere MN, Herbert JR, Zimmerman SO (1995) A model of the G1 phase of the cell cycle incorporating cyclin E/cdk2 complex and retinoblastoma protein. Oncogene 11(6):1199–1205

    Google Scholar 

  • Obeyesekere MN, Tucker SL, Zimmerman SO (1994) A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. Cell Prolif 27(2):105–113

    Article  Google Scholar 

  • Pomerening JR, Kim SY, Ferrell JE Jr (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122(4):565–578

    Article  Google Scholar 

  • Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5(4):346–351

    Article  Google Scholar 

  • Qu Z, Weiss JN, MacLellan WR (2003) Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am J Physiol Cell Physiol 284(2):C349–364

    Article  Google Scholar 

  • Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45(1):145–153

    Article  Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49(4):559–567

    Article  Google Scholar 

  • Salazar C, Hofer T (2007) Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions. FEBS J 274(4):1046–1061

    Article  Google Scholar 

  • Salazar C, Hofer T (2009) Multisite protein phosphorylation-from molecular mechanisms to kinetic models. FEBS J 276(12):3177–3198

    Article  Google Scholar 

  • Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ, Sible JC (2003) Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci USA 100(3):975–980

    Article  Google Scholar 

  • Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7(2):e1001077

    Article  MathSciNet  Google Scholar 

  • Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW (1990) Cyclin activation of p34cdc2. Cell 63(5):1013–1024

    Article  Google Scholar 

  • Tang Z, Coleman TR, Dunphy WG (1993) Two distinct mechanisms for negative regulation of the Wee1 protein kinase. Embo J 12(9):3427–3436

    Google Scholar 

  • Toettcher JE, Loewer A, Ostheimer GJ, Yaffe MB, Tidor B, Lahav G (2009) Distinct mechanisms act in concert to mediate cell cycle arrest. Proc Natl Acad Sci USA 106(3):785–790

    Article  Google Scholar 

  • Trunnell NB, Poon AC, Kim SY, Ferrell JE Jr (2011) Ultrasensitivity in the regulation of Cdc25C by Cdk1. Mol Cell 41(3):263–274

    Article  Google Scholar 

  • Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci USA 88(16):7328–7332

    Article  Google Scholar 

  • Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210(2):249–263

    Article  Google Scholar 

  • Verdugo A, Vinod PK, Tyson JJ, Novak B (2013) Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol 3(3):120179

    Article  Google Scholar 

  • Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B (2011) Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 8(61):1128–1141

    Article  Google Scholar 

  • Yang L, MacLellan WR, Han Z, Weiss JN, Qu Z (2004) Multisite phosphorylation and network dynamics of cyclin-dependent kinase signaling in the eukaryotic cell cycle. Biophys J 86(6):3432–3443

    Article  Google Scholar 

  • Yang Q, Ferrell JE Jr (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol 15(5):519–525

    Article  Google Scholar 

  • Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10(4):476–482

    Article  Google Scholar 

  • Zhang T, Schmierer B, Novak B (2011) Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches. Open Biol 1(3):110009

    Article  Google Scholar 

Download references

Acknowledgments

Preparation of this article was supported in part by the National Institutes of Health (USA) Grant 5R01 GM078989-08 to J.J.T. and by the European Community’s Seventh Framework Grant MitoSys/241548 to B.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tyson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyson, J.J., Novak, B. Bistability, Oscillations, and Traveling Waves in Frog Egg Extracts. Bull Math Biol 77, 796–816 (2015). https://doi.org/10.1007/s11538-014-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0009-9

Keywords

Navigation