Skip to main content

Advertisement

Log in

Modeling HIV-1 Dynamics and Fitness in Cell Culture Across Scales

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A common approach to understand and analyze complex biological systems is to describe the dynamics in terms of a system of ordinary differential equations (ODE) depending on numerous biologically meaningful and descriptive parameters that are estimated using observed data. The ODE models are often based on the implicit assumption of well-mixed dynamics, i.e., the delay of interaction due to spatial distribution is not included in the model. In this article, we address the question how the heterogeneity of the underlying system affects the estimated parameter values of the ODE model, and on the other hand, what information about the microscopic system can be drawn from these values. The system we are considering is a pairwise growth competition assay used to quantify ex vivo replicative fitness of different HIV-1 isolates. To overcome the lack of ground truth, we generate data using a detailed microscopic spatially distributed hybrid stochastic-deterministic (HSD) infection model in which the dynamics is controlled by parameters directly related to cell level infection, virus production processes, and diffusion of virus particles. The synthetic data sets are then analyzed using an ODE based well-mixed model, in which the corresponding macroscopic parameter distributions are estimated using Markov chain Monte Carlo (MCMC) methods. This approach provides a comprehensive picture of the statistical dependencies of the model parameter across different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ball, S. C., Abraha, A., Collins, K. R., Marozsan, A. J., Baird, H., Quiñones-Mateu, M. E., Penn-Nicholson, A., Murray, M., Richard, N., Lobritz, M., et al. (2003). Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C. J. Virol., 77(2), 1021–1038.

    Article  Google Scholar 

  • Banks, H. T., Grove, S., Hu, S., & Ma, Y. (2005). A hierarchical Bayesian approach for parameter estimation in HIV models. Inverse Probl., 21(6), 1803.

    Article  MathSciNet  MATH  Google Scholar 

  • Beauchemin, C. (2006). Probing the effects of the well-mixed assumption on viral infection dynamics. J. Theor. Biol., 242(2), 464–477.

    Article  MathSciNet  Google Scholar 

  • Blaak, H., Brouwer, M., Ran, L. J., De Wolf, F., & Schuitemaker, H. (1998). In vitro replication kinetics of human immunodeficiency virus type 1 (HIV-1) variants in relation to virus load in long-term survivors of HIV-1 infection. J. Infect. Dis., 177(3), 600–610.

    Article  Google Scholar 

  • Bonhoeffer, S., Barbour, A. D., & De Boer, R. J. (2002). Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc. Lond. B, Biol. Sci., 269(1503), 1887–1893.

    Article  Google Scholar 

  • Calvetti, D., & Somersalo, E. (2006). Large-scale statistical parameter estimation in complex systems with an application to metabolic models. Multiscale Model. Simul., 5(4), 1333–1366.

    Article  MathSciNet  MATH  Google Scholar 

  • Calvetti, D., & Somersalo, E. (2007). Introduction to Bayesian scientific computing: ten lectures on subjective computing (Vol. 2). New York: Springer.

    MATH  Google Scholar 

  • Dixit, N. M., & Perelson, A. S. (2004). Multiplicity of human immunodeficiency virus infections in lymphoid tissue. J. Virol., 78(16), 8942–8945.

    Article  Google Scholar 

  • Dixit, N. M., & Perelson, A. S. (2005). HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA, 102(23), 8198–8203.

    Article  Google Scholar 

  • Dykes, C., & Demeter, L. M. (2007). Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin. Microbiol. Rev., 20(4), 550–578.

    Article  Google Scholar 

  • Dykes, C., Wang, J., Jin, X., Planelles, V., An, D. S., Tallo, A., Huang, Y., Wu, H., & Demeter, L. M. (2006). Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture. J. Clin. Microbiol., 44(6), 1930–1943.

    Article  Google Scholar 

  • Funk, G. A., Jansen, V. A. A., Bonhoeffer, S., & Killingback, T. (2005). Spatial models of virus-immune dynamics. J. Theor. Biol., 233(2), 221–236.

    Article  MathSciNet  Google Scholar 

  • Goudsmit, J., de Ronde, A., de Rooij, E., & De Boer, R. (1997). Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J. Virol., 71(6), 4479–4484.

    Google Scholar 

  • Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 223–242.

  • Immonen, T., Gibson, R., Leitner, T., Miller, M. A., Arts, E. J., Somersalo, E., & Calvetti, D. (2012). A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay. J. Theor. Biol.

  • Kouyos, R. D., von Wyl, V., Hinkley, T., Petropoulos, C. J., Haddad, M., Whitcomb, J. M., Böni, J., Yerly, S., Cellerai, C., Klimkait, T., et al. (2011). Assessing predicted HIV-1 replicative capacity in a clinical setting. PLoS Pathog., 7(11), e1002321.

    Article  Google Scholar 

  • Levin, S. A., & Durrett, R. (1996). From individuals to epidemics. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 351(1347), 1615–1621.

    Article  Google Scholar 

  • Marée, A. F. M., Keulen, W., Boucher, C. A. B., & De Boer, R. J. (2000). Estimating relative fitness in viral competition experiments. J. Virol., 74(23), 11067–11072.

    Article  Google Scholar 

  • Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., & Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments. Bull. Math. Biol., 70(6), 1749–1771.

    Article  MathSciNet  MATH  Google Scholar 

  • Navis, M., Schellens, I., van Baarle, D., Borghans, J., van Swieten, P., Miedema, F., Kootstra, N., & Schuitemaker, H. (2007). Viral replication capacity as a correlate of HLA B57/B5801-associated nonprogressive HIV-1 infection. J. Immunol., 179(5), 3133–3143.

    Article  Google Scholar 

  • Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J. L., & Trono, D. (1999). Nef-induced CD4 degradation: a diacidic-based motif in nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell, 97(1), 63–73.

    Article  Google Scholar 

  • Quiñones-Mateu, M. E., & Arts, E. J. (2001). HIV-1 fitness: implications for drug resistance, disease progression, and global epidemic evolution. HIV Seq. Compend., 2001, 134–170.

    Google Scholar 

  • Quiñones-Mateu, M. E., Ball, S. C., Marozsan, A. J., Torre, V. S., Albright, J. L., Vanham, G., Van Der Groen, G., Colebunders, R. L., & Arts, E. J. (2000). A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J. Virol., 74(19), 9222–9233.

    Article  Google Scholar 

  • Strain, M. C., Richman, D. D., Wong, J. K., & Levine, H. (2002). Spatiotemporal dynamics of HIV propagation. J. Theor. Biol., 218(1), 85–96.

    Article  MathSciNet  Google Scholar 

  • Troyer, R. M., Collins, K. R., Abraha, A., Fraundorf, E., Moore, D. M., Krizan, R. W., Toossi, Z., Colebunders, R. L., Jensen, M. A., Mullins, J. I., et al. (2005). Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J. Virol., 79(14), 9006–9018.

    Article  Google Scholar 

  • Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180(1), 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Webb, S. D., Keeling, M. J., & Boots, M. (2007). Host–parasite interactions between the local and the mean-field: how and when does spatial population structure matter? J. Theor. Biol., 249(1), 140–152.

    Article  MathSciNet  Google Scholar 

  • Wu, H., Huang, Y., Dykes, C., Liu, D., Ma, J., Perelson, A. S., & Demeter, L. M. (2006). Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay. J. Virol., 80(5), 2380–2389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Calvetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Immonen, T., Somersalo, E. & Calvetti, D. Modeling HIV-1 Dynamics and Fitness in Cell Culture Across Scales. Bull Math Biol 76, 486–514 (2014). https://doi.org/10.1007/s11538-013-9926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9926-2

Keywords

Navigation