Skip to main content
Log in

Multimodality and Flexibility of Stochastic Gene Expression

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a general class of mathematical models for stochastic gene expression where the transcription rate is allowed to depend on a promoter state variable that can take an arbitrary (finite) number of values. We provide the solution of the master equations in the stationary limit, based on a factorization of the stochastic transition matrix that separates timescales and relative interaction strengths, and we express its entries in terms of parameters that have a natural physical and/or biological interpretation. The solution illustrates the capacity of multiple states promoters to generate multimodal distributions of gene products, without the need for feedback. Furthermore, using the example of a three states promoter operating at low, high, and intermediate expression levels, we show that using multiple states operons will typically lead to a significant reduction of noise in the system. The underlying mechanism is that a three-states promoter can change its level of expression from low to high by passing through an intermediate state with a much smaller increase of fluctuations than by means of a direct transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackers, G. K., Johnson, A. D., & Shea, M. A. (1982). Quantitative model for gene regulation by λ phage repressor. Proc. Natl. Acad. Sci. USA, 79, 1129–1133.

    Article  Google Scholar 

  • Arkin, A., Ross, J., & McAdams, H. H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics, 149, 1633–1648.

    Google Scholar 

  • Cai, L., Friedman, N., & Xie, X. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature, 440(7082), 358–362.

    Article  Google Scholar 

  • Cases, I., & de Lorenzo, V. (2005). Promoters in the environment: transcriptional regulation in its natural context. Nat. Rev. Microbiol., 3, 105–118.

    Article  Google Scholar 

  • Chen, H., Monte, E., Parvatiyar, M. S., Rosa-Garrido, M., Franklin, S., & Vondriska, T. M. (2012). Structural considerations for chromatin state models with transcription as a functional readout. FEBS Lett., 586, 3548–3554.

    Article  Google Scholar 

  • Coulon, A., Gandrillon, O., & Beslon, G. (2010). On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Syst. Biol., 4(1), 2–18.

    Article  Google Scholar 

  • Delbrück, M. (1940). Statistical fluctuations in autocatalytic reactions. J. Chem. Phys., 8, 120–124.

    Article  Google Scholar 

  • Elf, J., Li, G., & Xie, X. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828), 1191–1194.

    Article  Google Scholar 

  • Escolar, L., Pérez-Martín, J., & de Lorenzo, V. (1999). Opening the iron box: transcriptional metalloregulation by the fur protein. J. Bacteriol., 181, 6223–6229.

    Google Scholar 

  • Ferguson, M., Le Coq, D., Jules, M., Aymerich, S., Radulescu, O., Declerck, N., & Royer, C. (2012). Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc. Natl. Acad. Sci., 109(1), 155–160.

    Article  Google Scholar 

  • Garcia, H., & Phillips, R. (2011). Quantitative dissection of the simple repression input–output function. Proc. Natl. Acad. Sci., 108(29), 12,173–12,178.

    Article  Google Scholar 

  • Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of genetic toggle switch in Escherichia coli. Nature, 403, 339–342.

    Article  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.

    Article  Google Scholar 

  • Goss, P., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc. Natl. Acad. Sci., 95(12), 6750–6755.

    Article  Google Scholar 

  • Hasty, J., Pradines, J., Dolnik, M., & Collins, J. J. (2000). Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA, 97, 2075–2080.

    Article  MATH  Google Scholar 

  • Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136(23), 3853–3862.

    Article  Google Scholar 

  • Janssens, H., Hou, S., Jaeger, J., Kim, A. R., Myasnikova, E., Sharp, D., & Reinitz, J. (2006). Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat. Genet., 38, 1159–1165.

    Article  Google Scholar 

  • Kepler, T., & Elston, T. (2001). Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81(6), 3116–3136.

    Article  Google Scholar 

  • Kierzek, A., Zaim, J., & Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol. Chem., 276, 8165–8172.

    Article  Google Scholar 

  • Kirkilionis, M., Janus, U., & Sbano, L. (2011). Multi-scale genetic dynamic modelling ii: application to synthetic biology. Theory Biosci., 130(3), 183–201.

    Article  Google Scholar 

  • McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA, 94, 814–819.

    Article  Google Scholar 

  • McAdams, H. H., & Arkin, A. (1998). Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct., 27, 199–224.

    Article  Google Scholar 

  • Metzler, R., & Wolynes, P. G. (2002). Number fluctuations and the threshold model of kinetic switches. Chem. Phys., 284, 469–479.

    Article  Google Scholar 

  • Monod, J., & Jacob, F. (1961). Genetic regulatory mechanisms in synthesis of proteins. J. Mol. Biol., 3, 318–356.

    Article  Google Scholar 

  • Muller-Hill, B. (1996). The lac operon: a short history of a genetic paradigm. Berlin: de Gruyter.

    Book  Google Scholar 

  • Murphy, K. F., Balázsi, G., & Collins, J. J. (2007). Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA, 104, 12,726–12,731.

    Article  Google Scholar 

  • Murphy, K. F., Adams, R. M., Wang, X., Balázsi, G., & Collins, J. J. (2010). Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res., 38, 2712–2726.

    Article  Google Scholar 

  • Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., & van Oudenaarden, A. (2002). Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73.

    Article  Google Scholar 

  • Paulsson, J., & Ehrenberg, M. (2000). Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett., 84, 5447–5450.

    Article  Google Scholar 

  • Ptashne, M. (1992). A genetic switch: phage λ and higher organisms. Cambridge: Cell Press/Blackwell.

    Google Scholar 

  • Raj, A., Peskin, C., Tranchina, D., Vargas, D., & Tyagi, S. (2006). Stochastic mrna synthesis in mammalian cells. PLoS Biol., 4(10), e309.

    Article  Google Scholar 

  • Rao, C. V., Wolf, D. M., & Arkin, A. P. (2002). Control, exploitation and tolerance of intracellular noise. Nature, 420, 231–237.

    Article  Google Scholar 

  • Saiz, L., & Vilar, J. (2008). Ab initio thermodynamic modeling of distal multisite transcription regulation. Nucleic Acids Res., 36(3), 726–731.

    Article  Google Scholar 

  • Sánchez, Á., & Kondev, J. (2008). Transcriptional control of noise in gene expression. Proc. Natl. Acad. Sci., 105(13), 5081–5086.

    Article  Google Scholar 

  • Sasai, M., & Wolynes, P. G. (2003). Stochastic gene expression as a many-body problem. Proc. Natl. Acad. Sci. USA, 100, 2374–2379.

    Article  Google Scholar 

  • Satory, D., Gordon, A., Halliday, J., & Herman, C. (2011). Epigenetic switches: can infidelity govern fate in microbes? Curr. Opin. Microbiol., 14(2), 212–217.

    Article  Google Scholar 

  • Taniguchi, Y., Choi, P., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A., & Xie, X. (2010). Quantifying e. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329(5991), 533–538.

    Article  Google Scholar 

  • Thattai, M., & van Oudenaarden, A. (2001). Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA, 98, 8614–8619.

    Article  Google Scholar 

  • Thattai, M., & van Oudenaarden, A. (2002). Attenuation of noise in ultrasensitives signaling cascades. Biophys. J., 82, 2943–2950.

    Article  Google Scholar 

  • van Kampen, N. G. (1992). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Vicente, M., Chater, K. F., & de Lorenzo, V. (1999). Bacterial transcription factors involved in global regulation. Mol. Microbiol., 33, 8–17.

    Article  Google Scholar 

Download references

Acknowledgements

Work supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil) and by the USP-COFECUB 2008-2012 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme da Costa Pereira Innocentini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocentini, G.d.C.P., Forger, M., Ramos, A.F. et al. Multimodality and Flexibility of Stochastic Gene Expression. Bull Math Biol 75, 2600–2630 (2013). https://doi.org/10.1007/s11538-013-9909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9909-3

Keywords

Navigation