Skip to main content
Log in

Cyclic Loading of Growing Tissue in a Bioreactor: Mathematical Model and Asymptotic Analysis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simplified 2D mathematical model for tissue growth within a cyclically-loaded tissue engineering scaffold is presented and analyzed. Such cyclic loading has the potential to improve yield and functionality of tissue such as bone and cartilage when grown on a scaffold within a perfusion bioreactor. The cyclic compression affects the flow of the perfused nutrient, leading to flow properties that are inherently unsteady, though periodic, on a timescale short compared with that of tissue proliferation. A two-timescale analysis based on these well-separated timescales is exploited to derive a closed model for the tissue growth on the long timescale of proliferation. Some sample numerical results are given for the final model, and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babalola, O. M., & Bonassar, L. J. (2009). Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. J. Biomech. Eng., 131(6), 061014.

    Article  Google Scholar 

  • Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., & Hunziker, E. B. (1995). Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci., 108(4), 1497–1508.

    Google Scholar 

  • Chung, C., Chen, C., Chen, C., & Tseng, C. (2007). Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng., 97, 1603–1616.

    Article  Google Scholar 

  • Chung, C., Chen, C., Lin, T., & Tseng, C. (2008). A compact computational model for cell construct development in perfusion culture. Biotechnol. Bioeng., 99, 1535–1541.

    Article  Google Scholar 

  • Coletti, F., Macchietto, S., & Elvassore, N. (2006). Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Ind. Eng. Chem. Res., 45, 8158–8169.

    Article  Google Scholar 

  • Curtis, A., & Riehle, M. (2001). Tissue engineering: the biophysical background. Phys. Med. Biol., 46, 47–65.

    Article  Google Scholar 

  • El Haj, A., & Cartmell, S. (2010). Bioreactors for bone tissue engineering. J. Eng. Med., 224, 1523–1532.

    Article  Google Scholar 

  • El Haj, A., Minter, S., Rawlinson, S., Suswillo, R., & Lanyon, L. (1990). Cellular responses to mechanical loading in vitro. J. Bone Miner. Res., 5(9), 923–932.

    Article  Google Scholar 

  • Lappa, M. (2003). Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng., 84(5), 518–532.

    Article  Google Scholar 

  • Lewis, M., MacArthur, B., Malda, J., Pettet, G., & Please, C. (2005). Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng., 91, 607–615.

    Article  Google Scholar 

  • Lutianov, M., Shialesh, N., Roberts, S., & Kuiper, J.-H. (2011). A mathematical model of cartilage regeneration after cell therapy. J. Theor. Biol., 289, 136–150.

    Article  Google Scholar 

  • Malda, J., Rouwkema, J., Martens, D., Le Comte, E., Kooy, F., Tramper, J., van Blitterswijk, C., & Riesle, J. (2004). Oxygen gradients in tissue-engineered pegt/pbt cartilaginous constructs: measurement and modelling. Biotechnol. Bioeng., 86(1), 9–18.

    Article  Google Scholar 

  • Mauck, R. L., Soltz, M. A., Wang, C. C. B., Wong, D. D., Chao, P.-H. G., Valhmu, W. B., Hung, C. T., & Ateshian, G. A. (2000). Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte seeded agarose gels. J. Biomech. Eng., 122(3), 252–260.

    Article  Google Scholar 

  • McCoy, R., & O’Brien, F. (2010). Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng., Part B, 16(6), 587–601.

    Article  Google Scholar 

  • Moo, E. K., Herzog, W., Han, S. K., Abu Osman, N. A., Pingguan-Murphy, B., & Federico, S. (2012). Mechanical behaviour of in-situ chondrocytes subjected to different loading rates: a finite element study. Biomech. Model. Mechanobiol., 11(7), 983–993.

    Article  Google Scholar 

  • Obradovic, B., Meldon, J. H., Freed, L. E., & Vunjak-Novakovic, G. (2000). Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J., 46, 1860–1871.

    Article  Google Scholar 

  • O’Dea, R., Waters, S., & Byrne, H. (2008). A two-fluid model for tissue growth within a dynamic flow environment. Eur. J. Appl. Math., 19(6), 607–634.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Dea, R., Waters, S., & Byrne, H. (2009). A multiphase model for tissue construct growth in a perfusion bioreactor. Math. Med. Biol., 27(2), 95–127.

    Article  MathSciNet  Google Scholar 

  • Osborne, J., O’Dea, R., Whiteley, J., Byrne, H., & Waters, S. (2010). The influence of bioreactor geometry and the mechanical environment on engineered tissues. Journal of Biomechanical Engineering, 132(5), 051006.

    Article  Google Scholar 

  • Pohlmeyer, J., Waters, S., & Cummings, L. J. (2013). Mathematical model of a growth factor driven haptotaxis and proliferation in a tissue engineering scaffold. Bull. Math. Biol., 75(3), 393–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Porter, B., Zauel, R., Stockman, H., Guldberg, R., & Fyhrie, D. (2005). 3-D computational modelling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. Eng., 38(3), 543–549.

    Article  Google Scholar 

  • Raimondi, M., Boschetti, F., Falcone, L., Migliavacca, F., Remuzzi, A., & Dubini, G. (2004). The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology, 41(3), 401–410.

    Google Scholar 

  • Schätti, O., Grad, S., Goldhahn, J., Salzmann, G., Li, Z., Alini, M., & Stoddart, M. J. (2011). A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cells Mater., 22, 214–225.

    Google Scholar 

  • Sengers, B., Taylor, M., Please, C., & Oreffo, R. (2007). Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 28, 1926–1940.

    Article  Google Scholar 

  • Shakeel, M., Matthews, P., Waters, S., & Graham, R. (2013). A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor. Math. Med. Biol., 30(1), 21–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, N., Grad, S., Stoddart, M. J., Niemeyer, P., Sudkamp, N. P., Pestka, J., Alini, M., Chen, J., & Salzmann, G. M. (2013). Bioreactor-induced chondrocyte maturation is dependent on cell passage and onset of loading. Cartilage, 4(2), 165–176.

    Article  Google Scholar 

  • Zhou, S., Cui, Z., & Urban, J. (2004). Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum., 50(12), 3915–3924.

    Article  Google Scholar 

Download references

Acknowledgements

Both authors acknowledge partial financial support from KAUST under Award No. KUK-C1-013-04 in the form of OCCAM Visiting Fellowships. We thank Drs Treena Arinzeh, Shahriar Afkhami, Michael Siegel (NJIT), and Sarah Waters (Oxford) for useful guidance with the development and numerical solution of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Cummings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohlmeyer, J.V., Cummings, L.J. Cyclic Loading of Growing Tissue in a Bioreactor: Mathematical Model and Asymptotic Analysis. Bull Math Biol 75, 2450–2473 (2013). https://doi.org/10.1007/s11538-013-9902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9902-x

Keywords

Navigation