Skip to main content

Advertisement

Log in

Functional Switching and Stability of Regulatory T Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

It is widely accepted that the primary immune system contains a subpopulation of cells, known as regulatory T cells whose function is to regulate the immune response. There is conflicting biological evidence regarding the ability of regulatory cells to lose their regulatory capabilities and turn into immune promoting cells. In this paper, we develop mathematical models to investigate the effects of regulatory T cell switching on the immune response. Depending on environmental conditions, regulatory T cells may transition, becoming effector T cells that are immunostimulatory rather than immunoregulatory. We consider this mechanism both in the context of a simple, ordinary differential equation (ODE) model and in the context of a more biologically detailed, delay differential equation (DDE) model of the primary immune response. It is shown that models that incorporate such a mechanism express the usual characteristics of an immune response (expansion, contraction, and memory phases), while being more robust with respect to T cell precursor frequencies. We characterize the affects of regulatory T cell switching on the peak magnitude of the immune response and identify a biologically testable range for the switching parameter. We conclude that regulatory T cell switching may play a key role in controlling immune contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Althaus, C., Ganusov, V., & De Boer, R. (2007). Dynamics of CD8+ T cell responses during acute and chronic lymphocytic choriomeningitis virus infection. J. Immunol., 179(5), 2944.

    Article  Google Scholar 

  • Antia, R. (2003). Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol., 221(4), 585–598.

    Article  MathSciNet  Google Scholar 

  • Apostolou, I., & vonBoehmer, H. (2004). In vivo instruction of suppressor commitment in naïve t cells. J. Exp. Med., 199(10), 1401–1408.

    Article  Google Scholar 

  • Badovinac, V. P., Haring, J. S., & Harty, J. T. (2007). Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity, 26(6), 827–841.

    Article  Google Scholar 

  • Baecher-Allan, C., Viglietta, V., & Hafler, D. A. (2004). Human CD4+CD25+ regulatory T cells. Semin. Immunol., 16(2), 89–98.

    Article  Google Scholar 

  • Belkaid, Y., Piccirillo, C., Mendez, S., Shevach, E., & Sacks, D. (2002). CD4+CD25+ regulatory T cells control leishmania major persistence and immunity. Nature, 420(6915), 502–507.

    Article  Google Scholar 

  • Belz, G. T., Zhang, L., Lay, M. D. H., Kupresanin, F., & Davenport, M. P. (2007). Killer t cells regulate antigen presentation for early expansion of memory, but not naive, cd8+ t cell. Proc. Natl. Acad. Sci. USA, 104(15), 6341–6346.

    Article  Google Scholar 

  • Brandt, L., Benfield, T., Mens, H., Clausen, L. N., Katzenstein, T. L., Fomsgaard, A., & Karlsson, I. (2011). Low level of regulatory T cells and maintenance of balance between regulatory T cells and TH17 cells in HIV-1-infected elite controllers. J. Acquir. Immune Defic. Syndr., 57(2), 101–108.

    Article  Google Scholar 

  • Callard, R., George, A. J., & Stark, J. (1999). Cytokines, chaos, and complexity. Immunity, 11(5), 507–513.

    Article  Google Scholar 

  • Catron, D. M., Itano, A. A., Pape, K. A., Mueller, D. L., & Jenkins, M. K. (2004). Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity, 21(3), 341–347.

    Article  Google Scholar 

  • Chen, W., Jin, W., Hardegen, N., Lei, K., Li, L., Marinos, N., McGrady, G., & Wahl, S. (2003). Conversion of peripheral CD4+CD25- naïve T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med., 198(12), 1875–1886.

    Article  Google Scholar 

  • De Boer, R. J., Homann, D., & Perelson, A. S. (2003). Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol., 171(8), 3928–3935.

    Article  Google Scholar 

  • Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., & Schirmer, M. (2006). Imbalance of regulatory T cells in human autoimmune diseases. Immunology, 117(3), 289–300.

    Article  Google Scholar 

  • Duarte, J., Zelenay, S., Bergman, M.-L., Martins, A., & Demengeot, J. (2009). Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol., 39(4), 948–955.

    Article  Google Scholar 

  • Fehérvári, Z., & Sakaguchi, S. (2004). Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int. Immunol., 16(12), 1769–1780.

    Article  Google Scholar 

  • Fishman, M. A., & Perelson, A. S. (1999). Th1/Th2 differentiation and cross-regulation. Bull. Math. Biol., 61(3), 403–436.

    Article  MATH  Google Scholar 

  • Ghiringhelli, F., Larmonier, N., Schmitt, E., Parcellier, A., Cathelin, D., Garrido, C., Chauffert, B., Solary, E., Bonnotte, B., & Martin, F. (2004). CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol., 34(2), 336–344.

    Article  Google Scholar 

  • Hong, T., Xing, J., Li, L., & Tyson, J. J. (2011). A mathematical model for the reciprocal differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput. Biol., 7(7), e1002122.

    Article  MathSciNet  Google Scholar 

  • Huehn, H. A. J. (2005). Homing to suppress: address codes for treg migration. Trends Immunol., 26(12), 632–636.

    Article  Google Scholar 

  • Huehn, J., Polansky, J. K., & Hamann, A. (2009). Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol., 9(2), 83–89.

    Article  Google Scholar 

  • Kaech, S. M., & Ahmed, R. (2001). Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol., 2(5), 415–422.

    Google Scholar 

  • Kim, P., Lee, P., & Levy, D. (2010). Emergent group dynamics governed by regulatory cells produce a robust primary t cell response. Bull. Math. Biol., 72, 611–644.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, P., Lee, P., & Levy, D. (2012). Basic principles in modeling adaptive regulation and immunodominance. In A. Friedman, E. Kashdan, U. Ledzewicz, & H. Schättler (Eds.), Mathematical models and methods in biomedicine. Berlin: Springer.

    Google Scholar 

  • Kim, P. S., Lee, P. P., & Levy, D. (2011). A theory of immunodominance and adaptive regulation. Bull. Math. Biol., 73(7), 1645–1665.

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, L., Khazaie, K., & vonBoehmer, H. (2003). In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA, 100(15), 8886–8891.

    Article  Google Scholar 

  • Kretschmer, K., Apostolou, I., Hawiger, D., Khazaie, K., Nussenzweig, M., & vonBoehmer, H. (2005). Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol., 6(12), 1219–1227.

    Article  Google Scholar 

  • Mercado, R., Vijh, S., Allen, S. E., Kerksiek, K., Pilip, I. M., & Pamer, E. G. (2000). Early programming of T cell populations responding to bacterial infection. J. Immunol., 165(12), 6833–6839.

    Article  Google Scholar 

  • Miyara, S. S. M. (2007). Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med., 13(3), 108–116.

    Article  Google Scholar 

  • Mohri, H., Perelson, A. S., Tung, K., Ribeiro, R. M., Ramratnam, B., Markowitz, M., Kost Hurley, R., Weinberger, L., Cesar, D., Hellerstein, M. K., & Ho, D. D. (2001). Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med., 194(9), 1277–1288.

    Article  Google Scholar 

  • Murphy, K., Travers, P., & Walport, M. (2008). Immunobiology. New York: Garland Science.

    Google Scholar 

  • Nowak, M. (1996). Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation. Semin. Virol., 7(1), 83–92.

    Article  Google Scholar 

  • Razvi, E. S., Jiang, Z., Woda, B. a., & Welsh, R. M. (1995). Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Pathol., 147(1), 79–91.

    Google Scholar 

  • Renno, T., Attinger, A., Locatelli, S., Bakker, T., Vacheron, S., & MacDonald, H. R. (1999). Cutting edge: apoptosis of superantigen-activated T cells occurs preferentially after a discrete number of cell divisions in vivo. J. Immunol., 162(11), 6312–6315.

    Google Scholar 

  • Rubtsov, Y. P., Niec, R. E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist, C., & Rudensky, a. Y. (2010). Stability of the regulatory T cell lineage in vivo. Science, 329(5999), 1667–1671.

    Article  Google Scholar 

  • Sakaguchi, S. (2010). Conditional stability of T cells. Nature, 468, 41–42.

    Article  Google Scholar 

  • Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787.

    Article  Google Scholar 

  • Sather, B., Treuting, P., Perdue, N., Miazgowicz, M., Fontenot, J., Rudensky, A., & Campbell, D. (2007). Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med., 204(6), 1335–1347.

    Article  Google Scholar 

  • Shevach, E. (2006). From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity, 25(2), 195–201. Cited by (since 1996), 280.

    Article  Google Scholar 

  • Taams, L. S., Vukmanovic-Stejic, M., Smith, J., Dunne, P. J., Fletcher, J. M., Plunkett, F. J., Ebeling, S. B., Lombardi, G., Rustin, M. H., Bijlsma, J. W. J., Lafeber, F. P. J. G., Salmon, M., & Akbar, A. N. (2002). Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol., 32(6), 1621–1630.

    Article  Google Scholar 

  • Tang, Q., Adams, J. Y., Tooley, A. J., Bi, M., Fife, B. T., Serra, P., Santamaria, P., Locksley, R. M., Krummel, M. F., & Bluestone, J. A. (2006). Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol., 7(1), 83–92.

    Article  Google Scholar 

  • van Stipdonk, M. J., Hardenberg, G., Bijker, M. S., Lemmens, E. E., Droin, N. M., Green, D. R., & Schoenberger, S. P. (2003). Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol., 4(4), 361–365.

    Article  Google Scholar 

  • von Boehmer, H. (2005). Mechanisms of suppression by suppressor T cells. Nat. Immunol., 6(4), 338–344.

    Article  Google Scholar 

  • Wodarz, D., & Thomsen, A. R. (2005). Effect of the CTL proliferation program on virus dynamics. Int. Immunol., 17(9), 1269–1276.

    Article  Google Scholar 

  • Yamaguchi, T., Hirota, K., Nagahama, K., Ohkawa, K., Takahashi, T., Nomura, T., & Sakaguchi, S. (2007). Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity, 27(1), 145–159.

    Article  Google Scholar 

  • Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., & Steinman, R. (2003). Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med., 198(2), 235–247.

    Article  Google Scholar 

  • Yang, Y., Kim, D., & Fathman, C. G. (1998). Regulation of programmed cell death following t cell activation in vivo. Int. Immunol., 10(2), 175–183.

    Article  Google Scholar 

  • Yates, A., Bergmann, C., Van Hemmen, J. L., Stark, J., & Callard, R. (2000). Cytokine-modulated regulation of helper T cell populations. J. Theor. Biol., 206(4), 539–560.

    Article  Google Scholar 

  • Zhou, X., Bailey-Bucktrout, S. L., Jeker, L. T., Penaranda, C., Martínez-Llordella, M., Ashby, M., Nakayama, M., Rosenthal, W., & Bluestone, J. A. (2009). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol., 10(9), 1000–1007.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Kim for sharing his code. This work was supported in part by the joint NSF/NIGMS program under Grant Number DMS-0758374 and in part by Grant Number R01CA130817 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S., Levy, D. Functional Switching and Stability of Regulatory T Cells. Bull Math Biol 75, 1891–1911 (2013). https://doi.org/10.1007/s11538-013-9875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9875-9

Keywords

Navigation