Skip to main content

Advertisement

Log in

Mathematical Model of the Roles of T Cells in Inflammatory Bowel Disease

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Gut mucosal homeostasis depends on complex interactions among the microbiota, the intestinal epithelium, and the gut associated immune system. A breakdown in some of these interactions may precipitate inflammation. Inflammatory bowel diseases, Crohn’s disease, and ulcerative colitis are chronic inflammatory disorders of the gastrointestinal tract. The initial stages of disease are marked by an abnormally high level of pro-inflammatory helper T cells, Th1. In later stages, Th2 helper cells may dominate while the Th1 response may dampen. The interaction among the T cells includes the regulatory T cells (Treg). The present paper develops a mathematical model by a system of differential equations with terms nonlocal in the space spanned by the concentrations of cytokines that represents the interaction among T cells through a cytokine signaling network. The model demonstrates how the abnormal levels of T cells observed in inflammatory bowel diseases can arise from abnormal regulation of Th1 and Th2 cells by Treg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. N. Engl. J. Med., 361, 2066–2078.

    Article  Google Scholar 

  • Babyatsky, M. W., Rossiter, G., & Podolsky, D. K. (1996). Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology, 110, 975–984.

    Article  Google Scholar 

  • Bamias, G., Kaltsa, G., & Ladas, S. D. (2011). Cytokines in the pathogenesis of ulcerative colitis. Discov. Medicin., 11, 459–467.

    Google Scholar 

  • Baumgart, D., & Carding, S. (2007). Inflammatory bowel disease: cause and immunobiology. Lancet, 369(9573), 1627–1640.

    Article  Google Scholar 

  • Bouma, G., & Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol., 3(7), 521–533.

    Article  Google Scholar 

  • Conlon, P. J., Tyler, S., Grabstein, K. H., & Morrissey, P. (1989–1990) Interleukin-4 (b-cell stimulatory factor-1) augments the in vivo generation of cytotoxic cells in immunosuppressed animals. Biotechnol. Ther., 1, 31–41.

    Google Scholar 

  • Cosmi, L., Liotta, F., Angeli, R., Mazzinghi, B., Santarlasci, V., Manetti, R., Lasagni, L., Vanini, V., Romagnani, P., Maggi, E., Annunziato, F., & Romagnani, S. (2004). Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood, 103, 3117–3121.

    Article  Google Scholar 

  • Czarniecki, C. W., & Sonnenfeld, G. (1993). Interferon-gamma and resistance to bacterial infections. APMIS, Acta Pathol. Microbiol. Immunol. Scand., 101, 1–17.

    Article  Google Scholar 

  • Eastaff-Leung, N., Mabarrack, N., Barbour, A., Cummins, A., & Barry, S. (2010). Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J. Clin. Immunol., 30, 80–89.

    Article  Google Scholar 

  • Germain, R. N. (2012). Maintaining system homeostasis: the third law of Newtonian immunology. Nat. Immunol., 13, 902–906.

    Article  Google Scholar 

  • Grassegger, A., & Hopf, R. (2004). Significance of the cytokine interferon gamma in clinical dermatology. Clin. Exp. Dermatol., 29, 584–588.

    Article  Google Scholar 

  • Grogan, J. L., Mohrs, M., Harmon, B., Lacy, D. A., Sedat, J. W., & Locksley, R. M. (2001). Early transcription and silencing of cytokine genes underlie polarization of t helper cell subsets. Immunity, 14(3), 205–215.

    Article  Google Scholar 

  • Gross, F., Metzner, G., & Behn, U. (2010). Mathematical modeling of allergy and specific immunotherapy: Th1–Th2–Treg interactions. J. Theor. Biol., 269, 70–78.

    Article  MathSciNet  Google Scholar 

  • Hofer, T., Nathansen, H., Lohning, M., Radbruch, A., & Heinrich, R. (2002). GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. USA, 99, 9364–9368.

    Article  Google Scholar 

  • Hwang, E. S., Hong, J. H., & Glimcher, L. H. (2005). IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J. Exp. Med., 202, 1289–1300.

    Article  Google Scholar 

  • Ishikawa, D., Okazawa, A., Corridoni, D., Jia, L. G., Wang, X. M., Guanzon, M., Xin, W., Arseneau, K. O., Pizarro, T. T., & Cominelli, F. (2012). Tregs are dysfunctional in vivo in a spontaneous murine model of Crohn’s disease. Mucosal Immunol. doi:10.1038/mi.2012.67.

  • Kaminskam, B., Wesolowska, A., & Danilkiewicz, M. (2005). Tgf beta signalling and its role in tumour pathogenesis. Acta Biochim. Pol., 52, 329–337.

    Google Scholar 

  • Kato, K., Fukunaga, K., Kamikozuru, K., Kashiwamura, S., Hida, N., Ohda, Y., Takeda, N., Yoshida, K., Iimuro, M., Yokoyama, Y., Kikuyama, R., Miwa, H., & Matsumoto, T. (2011). Infliximab therapy impacts the peripheral immune system of immunomodulator and corticosteroid naive patients with Crohn’s disease. Gut Liver, 5, 37–45.

    Article  Google Scholar 

  • Kugathasan, S., Saubermann, L. J., Smith, L., Kou, D., Itoh, J., Binion, D. G., Levine, A. D., Blumberg, R. S., & Fiocchi, C. (2007). Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut, 56, 1696–1705.

    Article  Google Scholar 

  • Lee, S.-M., Gao, B., & Fang, D. (2008). Foxp3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood, 111(7), 3599–3606.

    Article  Google Scholar 

  • Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V., Gadina, M., Sher, A., Paul, W. E., & O’Shea, J. J. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA, 98(15), 137–142.

    Google Scholar 

  • Maloy, K., & Powrie, F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 474(7351), 298–306.

    Article  Google Scholar 

  • Matsuoka, K., Inoue, N., Sato, T., Okamoto, S., Hisamatsu, T., Kishi, Y., Sakuraba, A., Hitotsumatsu, O., Ogata, H., Koganei, K., Fukushima, T., Kanai, T., Watanabe, M., Ishii, H., & Hibi, T. (2004). T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut, 53, 1303–1308.

    Article  Google Scholar 

  • Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., Zeitz, M., & Duchmann, R. (2005). Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 128, 1868–1878.

    Article  Google Scholar 

  • Mitsuyama, K., Tomiyasu, N., Takaki, K., Masuda, J., Yamasaki, H., Kuwaki, K., Takeda, T., Kitazaki, S., Tsuruta, O., & Sata, M. (2006). Interleukin-10 in the pathophysiology of inflammatory bowel disease: increased serum concentrations during the recovery phase. Mediat. Inflamm., 2006(6), 26875.

    Google Scholar 

  • Nelson, B. H. (2004). IL-2, regulatory T cells, and tolerance. J. Immunol., 172, 3983–3988.

    Google Scholar 

  • Osugi, Y., Hara, J., Tagawa, S., Takai, K., Hosoi, G., Matsuda, Y., Ohta, H., Fujisaki, H., Kobayashi, M., Sakata, N., Kawa-Ha, K., Okada, S., & Tawa, A. (1997). Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood, 89, 4100–4103.

    Google Scholar 

  • Pak, S., Holland, N., Garnett, E. A., Mileti, E., Mahadevan, U., Beckert, R., Kanwar, B., & Heyman, M. B. (2012). Cytokine profiles in peripheral blood of children and adults with Crohn disease. J. Pediatr. Gastroenterol. Nutr., 54, 769–775.

    Article  Google Scholar 

  • Rao, B. M., Driver, I., Lauffenburger, D. A., & Wittrup, K. D. (2004). Interleukin 2 (IL-2) variants engineered for increased IL-2 receptor alpha-subunit affinity exhibit increased potency arising from a cell surface ligand reservoir effect. Mol. Pharmacol., 66, 864–869.

    Google Scholar 

  • Robinson, T. M., Nelson, R. G., & Boyer, J. D. (2003). Parasitic infection and the polarized Th2 immune response can alter a vaccine-induced immune response. DNA Cell Biol., 22, 421–430.

    Article  Google Scholar 

  • Rubin, D. T., Uluscu, O., & Sederman, R. (2012). Response to biologic therapy in Crohn’s disease is improved with early treatment: An analysis of health claims data. Inflamm. Bowel Dis. doi:10.1002/ibd.22925.

  • Sakaguchi, S., Wing, K., & Yamaguchi, T. (2009). Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur. J. Immunol., 39, 2331–2336.

    Article  Google Scholar 

  • Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol., 4, 953–964.

    Article  Google Scholar 

  • Stummvoll, G. H., DiPaolo, R. J., Huter, E. N., Davidson, T. S., Glass, D., Ward, J. M., & Shevach, E. M. (2008). Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells. J. Immunol., 181(3), 1908–1916.

    Google Scholar 

  • Szabo, S. J., Dighe, A. S., Gubler, U., & Murphy, K. M. (1997). Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med., 185(5), 817–824.

    Article  Google Scholar 

  • Wendelsdorf, K., Bassaganya-Riera, J., Hontecillas, R., & Eubank, S. (2010). Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease. J. Theor. Biol., 264, 1225–1239.

    Article  MathSciNet  Google Scholar 

  • Yates, A., Callard, R., & Stark, J. (2004). Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol., 231(2), 181–196.

    Article  MathSciNet  Google Scholar 

  • Zenewicz, L. A., Antov, A., & Flavell, R. A. (2009). CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med., 15(5), 199–207.

    Article  Google Scholar 

  • Zhu, J., Jankovic, D., Oler, A., Wei, G., Sharma, S., Hu, G., Guo, L., Yagi, R., Yamane, H., Punkosdy, G., Feigenbaum, L., Zhao, K., & Paul, W. E. (2012). The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity, 37, 660–673.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Mathematical Biosciences Institute and the National Science Foundation under Grant DMS 0931642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Cheong Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, WC., Arsenescu, R.I. & Friedman, A. Mathematical Model of the Roles of T Cells in Inflammatory Bowel Disease. Bull Math Biol 75, 1417–1433 (2013). https://doi.org/10.1007/s11538-013-9853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9853-2

Keywords

Navigation