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                    Abstract
We analyzed a model of phytoplankton competition for light in a well-mixed water column. The model, proposed by Gerla et al. (Oikos 120:519–527, 2011), assumed inhibition of photosynthesis at high irradiance (photoinhibition). We described the global behavior through mathematical analyses, providing a general solution to the multi-species competition for light with photoinhibition. We classified outcomes of 2- and 3-species competitions as examples, and evaluated feasibility of the theoretical predictions using empirical relationships between photosynthetic production and irradiance. Numerical simulations with published p–I curves indicate that photoinhibition may often lead to strong Allee effects and competitive facilitation among species. Hence, our results suggest that photoinhibition may play a major role in organizing phytoplankton communities.
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Appendix
Appendix
1.1 A.1 Basic Properties
We will demonstrate the shape of function 
[image: ]

 where p(I) satisfies p(0)=0, p(I)∈(0,∞) for 0<I≤I
                    in, dp/dI<∞, dp/dI>0 for 0≤I<I
                    opt, and dp/dI<0 for I
                    opt<I≤I
                    in. We claim that g(0)=0 and g(I
                    in)=p(I
                    in), and there is a unique point \(\hat{x}\) such that \(d g(\hat{x})/dx = 0\), and dg/dx>0 for \(x\in[0,\hat{x})\); dg/dx<0 for \(x \in(\hat{x}, I_{\mathrm{in}}]\).
The proof of g(0)=0 is straightforward: 
[image: ]

 because \(\int_{0}^{I_{\mathrm{in}}} \frac{p(I)}{I}\,dI\) is bounded and lim
                      x→0(lnI
                    in−lnx)=∞. Likewise, g(I
                    in)=p(I
                    in) can be proved by 
[image: ]


                  Next, we prove that g(x) is a unimodal function with a peak at \(\hat{x} \in(0, I_{\mathrm{opt}})\). The derivative of g(x) is 
[image: ]

 Let 
[image: ]

 Because p(0)=0 from the assumption, we have 
[image: ]

 Therefore, g
                    1(0)<g
                    2(0) and g
                    1(I
                    in)=g
                    2(I
                    in)=0.
The derivatives of g
                    1(x) and g
                    2(x) are: 
[image: ]

                    (12)
                


                    [image: ]

                    (13)
                

 Because p′(x)<0 for x∈(I
                    opt,I
                    in], we have \(|g_{1}^{\prime}(I_{\mathrm{in}}^{-})|>|g_{2}^{\prime}(I_{\mathrm{in}}^{-})|\). Since g
                    1(I
                    in)=g
                    2(I
                    in), it follows that g
                    1(x)>g
                    2(x) for x near I
                    in. By the intermediate value theorem, there exists a point \(\hat{x} \in(0,I_{\mathrm{in}})\) such that \(g_{1}(\hat{x})=g_{2}(\hat{x})\).
From \(g_{1}(\hat{x})=g_{2}(\hat{x})\), g
                    1(I
                    in)=g
                    2(I
                    in), there exists a point \(\bar{x} \in(\hat{x},I_{\mathrm{in}})\) such that \(g_{1}^{\prime}(\bar{x})=g_{2}^{\prime}(\bar{x})\) according to Rolle’s theorem. From (12) and (13), we have \(p^{\prime}(\bar{x})=0\). From assumption of p(x), it follows that \(\bar{x}=I_{\mathrm{opt}}\). Hence, \(\hat{x}<I_{\mathrm{opt}}<I_{\mathrm{in}}\).
Suppose there exists another point \(\hat{x}^{\prime}\in(0,I_{\mathrm{in}})\) with \(g_{1}(\hat{x}^{\prime})=g_{2}(\hat{x}^{\prime})\). If \(\hat{x}^{\prime}\in(\hat{x},I_{\mathrm{opt}}]\), then by Rolle’s theorem there exists a point \(s\in(\hat{x},\hat{x}^{\prime})\) such that p′(s)=0. It contradicts to that p′(I)>0 for 0≤I<I
                    opt. If \(\hat{x}^{\prime}\in(I_{\mathrm{opt}},I_{\mathrm{in}})\), then by Rolle’s theorem there exists a point s∈(I
                    opt,I
                    in) such that p′(s)=0. It contradict to that p′(I)<0 for 0≤I
                    opt<I<I
                    in. Thus, \(\hat{x}\) is the only point with \(g_{1}(\hat{x})=g_{2}(\hat{x})\).
Next, we prove the following theorem. In the following, we let L(t)=I
                    out(t) for convenience. From (11), 
[image: ]

                    (14)
                


                  
                    Theorem 2

                    
                      The solutions of (10) are positive and bounded.

                  
                    Proof

                    Assume there exists t
                      1>0 and some i∈{1,2,…,n} such that 
[image: ]

 By reversing time, let τ=−t and we consider backward behavior of the solution of (10) with initial data x
                      
                        i
                      (0)=0,x
                      
                        j
                      (0)=x
                      
                        j
                      (t
                      1)>0. It follows that x
                      
                        i
                      (τ)=0 for all τ<0. By the uniqueness of ordinary differential equations, we have x
                      
                        i
                      (−t
                      1)=0, a contradiction. Thus, the solutions are positive if the initial condition is in Ω.

                    To prove the boundedness of solution, we consider the differential inequalities 
[image: ]

 where 
[image: ]

 with \(g_{i}(L_{\max,i})=\max_{s\in[0,I_{0}]}g_{i}(s)\). Let y(t) be the solution of 
$$y'=\bigl[G_i\bigl(I_0 \exp(-k_iy)\bigr)-d_i\bigr] y. $$

 Then lim
                        t→∞
                      y(t)=y
                      
                        i
                      , where y
                      
                        i
                       satisfies G
                      
                        i
                      (I
                      0exp(−k
                      
                        i
                      
                      y
                      
                        i
                      ))−d
                      
                        i
                      =0. Hence, for given small ϵ, x
                      
                        i
                      (t)≤y
                      
                        i
                      +ϵ for all t large. Hence, x
                      
                        i
                      (t) is bounded for all time t for i=1,2,…,n. □

                  The next theorem says that if the light intensity is weak enough, then some species die out.

                    Theorem 3

                    
                      If
                      λ
                      
                        i
                      >I
                      0, then lim
                        t→∞
                      x
                      
                        i
                      (t)=0.

                  
                    Proof

                    Since L(t)≤I
                      0 for all t≥0, we have L(t)<λ
                      
                        i
                       for all t≥0. From g
                      
                        i
                      (L(t))≤G
                      
                        i
                      (L(t)), 
$$\frac{x_i'}{x_i}=g_i\bigl(L(t)\bigr)-d_i\leq G_i\bigl(L(t)\bigr)-d_i\leq G_i(I_0)-d_i<0, $$

 then x
                      
                        i
                      (t)→0 as t→∞. □

                  1.2 A.2 Local Stability of Equilibria
For simplicity, let 
$$f_i\bigl(x_1(t),x_2(t), \ldots,x_n(t)\bigr):=\bigl[g_i\bigl(L(t) \bigr)-d_i\bigr]x_i(t). $$

 We denote the Jacobian of (10) at an equilibrium E is \(J(E)=[m_{ij}]\in\mathbb{R}^{n\times n}\), where 
[image: ]


                  For the equilibrium E
                    0, the Jacobian at E
                    0 is 
$$J(E_0) = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} g_1(I_0)-d_1 & 0 & 0 & \ldots&0 \\ 0 & g_2(I_0)-d_2 &0 &\ldots&0 \\ \vdots\\ 0 & 0 &\ldots & 0 & g_n(I_0)-d_n \\ \end{array} \right ]. $$

 Obviously the eigenvalues of J(E
                    0) are g
                    
                      i
                    (I
                    0)−d
                    
                      i
                    , for i=1,2,…,n.
If I
                    0∉S, then g
                    
                      i
                    (I
                    0)−d
                    
                      i
                    <0 for all i and E
                    0 is locally asymptotically stable.
If I
                    0∈S, then there exists some i such that I
                    0∈(λ
                    
                      i
                    ,μ
                    
                      i
                    ). Hence, g
                    
                      i
                    (I
                    0)−d
                    
                      i
                    >0, and E
                    0 is unstable. If there exists some j such that I
                    0∉(λ
                    
                      j
                    ,μ
                    
                      j
                    ), then J(E
                    0) has negative eigenvalues and E
                    0 is saddle with the local stable manifold 
$$W_\mathrm{loc}^s(E_0)= \Biggl\{\sum _{i=1}^n c_ie_i: c_i=0 \mbox{ except some }j \mbox{ with } I_0\notin( \lambda_j,\mu_j). \Biggr\}, $$

 where e
                    
                      i
                     is the eigenvector corresponding to the eigenvalue of (g
                    
                      i
                    (I
                    0)−d
                    
                      i
                    ). Hence, the dimension of W
                    s(E
                    0), the stable manifold of E
                    0, is at most (n−1) and 
$$W^s(E_0)\subset\bigl\{(x_1, \ldots,x_n): x_i=0 \mbox{ if } I_0\in( \lambda_{i},\mu_{i})\bigr\}. $$

 Therefore, W
                    s(E
                    0)∩Ω=∅.
For the equilibria \(E_{\lambda_{r}}\), the Jacobian evaluated at \(E_{\lambda_{r}}\) is 
$$J(E_{\lambda_r}) = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad }c@{\quad}c@{\quad}c} m_{11} & 0 &\ldots&\ldots& \ldots&\ldots&\ldots& \ldots&0 \\ 0 & m_{22} &0 &\ldots&\ldots& \ldots&\ldots&\ldots&0 \\ \vdots\\ 0 &\ldots &0 &m_{r-1,r-1} &0 &\ldots&\ldots&\ldots &0\\ m_{r1} &\ldots&\ldots &m_{r,r-1} &m_{r,r} &m_{r,r+1} &\ldots&\ldots &m_{rn}\\ 0 &\ldots&\ldots&\ldots&0 &m_{r+1,r+1} &0 &\ldots&0\\ \vdots\\ 0 &\ldots&\ldots&\ldots&\ldots&\ldots&\ldots& 0 & m_{nn} \\ \end{array} \right ], $$

 where 
[image: ]

 The eigenvalues of \(J(E_{\lambda_{r}})\) are \(-k_{r}x_{\lambda_{r}}g_{r}'(\lambda_{r})\lambda_{r}<0\), and g
                    
                      j
                    (λ
                    
                      r
                    )−d
                    
                      j
                    , for all j≠r.
When λ
                    
                      r
                     is the endpoint of a component of S, we have that g
                    
                      j
                    (λ
                    
                      r
                    )−d
                    
                      j
                    <0 for j≠r. Hence, \(E_{\lambda_{r}}\) is locally asymptotically stable.
If λ
                    
                      r
                     is not the endpoint of a component of S, then there exists j such that λ
                    
                      r
                    ∈(λ
                    
                      j
                    ,μ
                    
                      j
                    ). The eigenvector corresponding to the negative eigenvalue \(-k_{r}x_{\lambda_{r}}g_{r}'(\lambda_{r})\lambda_{r}\) is 
$$v_r=(0,\ldots,0,x_r,0,\ldots,0),\quad x_r>0 \mbox{ in the }r\mbox{th component}, $$

 and the eigenvectors corresponding to the negative eigenvalues g
                    
                      i
                    (λ
                    
                      r
                    )−d
                    
                      i
                     are 
$$v_i=(0,\ldots,0,k_r,0,\ldots,0,-k_i,0, \ldots,0), $$

 where k
                    
                      r
                    , k
                    
                      j
                    >0 are in the ith , and rth component of vector v
                    
                      i
                    , respectively. We know that \(E_{\lambda_{r}}\) is saddle and the local stable manifold is 
$$W_\mathrm{loc}^s(E_{\lambda_r})= \Biggl\{E_{\lambda_r}+\sum _{i=1}^nc_i v_i:\ c_i=0 \mbox{ except } c_r \mbox{ and some } j\mbox{ with } \lambda_r\notin(\lambda_j,\mu_j) \Biggr\}. $$

 Hence, the stable manifold of \(E_{\lambda_{r}}\) is 
$$W^s(E_{\lambda_r})\subset\bigl\{(x_1, \ldots,x_n): x_i=0 \mbox{ if } \lambda_r\in( \lambda_{i},\mu_{i})\bigr\}, $$

 and \(W^{s}(E_{\lambda_{r}})\cap\varOmega=\emptyset\).
For the equilibria \(E_{\mu_{r}}\), the Jacobian evaluated at \(E_{\mu_{r}}\) is \(J(E_{\mu_{r}})\), the structure is similar to \(J(E_{\lambda_{r}})\) and 
[image: ]

 The eigenvalues are \(-k_{r}x_{\mu_{r}}g_{r}'(\mu_{r})\mu_{r}>0\), an g
                    
                      j
                    (μ
                    
                      r
                    )−d
                    
                      j
                    , for all j≠r.
For the case μ
                    
                      r
                     is the endpoint of a component of S, then g
                    
                      j
                    (μ
                    
                      r
                    )−d
                    
                      j
                    <0 for all j≠r. Hence, \(E_{\mu_{r}}\) is saddle with one dimensional unstable manifold 
$$W^u(E_{\mu_r})= \bigl\{E_{\mu_r}+sv_r: v_r=(0,\ldots,0,x_r,0,\ldots,0), x_r>0 \mbox{ in the }r\mbox{th component} \bigr\}. $$

 The eigenvectors corresponding to the negative eigenvalues g
                    
                      j
                    (λ
                    
                      r
                    )−d
                    
                      j
                     for all j≠r are 
$$v_j=(0,\ldots,0,k_r,0,\ldots,0,-k_j,0, \ldots,0), $$

 where k
                    
                      r
                    , k
                    
                      j
                    >0 are in the jth, and rth components of the vector v
                    
                      j
                    , respectively. \(E_{\mu_{r}}\) is saddle which stable manifold \(W^{s}(E_{\mu_{r}})\) is tangent to 
$$W_\mathrm{loc}^s(E_{\mu_r})= \Biggl\{E_{\mu_r}+\sum _{j=1}^{n}c_jv_j: c_r=0, c_j\neq0, \mbox{ for }j\neq r \Biggr\}, $$

 at \(E_{\mu_{r}}\). Thus, the (n−1)-dimensional stable manifold of \(E_{\mu_{r}}\) satisfies 
$$W^s(E_{\mu_r})\subset\bigl\{(x_1,x_2, \ldots,x_n), x_i>0 \mbox{ for all } i\bigr\}, $$

 and \(W^{s}(E_{\mu_{r}})\cap\varOmega\neq\emptyset\).
For the case μ
                    
                      r
                     is not the endpoint of a component of S, then there exists j such that μ
                    
                      r
                    ∈(λ
                    
                      j
                    ,μ
                    
                      j
                    ) and g
                    
                      j
                    (λ
                    
                      r
                    )−d
                    
                      j
                    >0. If there exists some i such that μ
                    
                      r
                    ∈(λ
                    
                      i
                    ,μ
                    
                      i
                    ), then \(E_{\mu_{r}}\) is saddle which stable manifold \(W^{s}(E_{\mu_{r}})\) is tangent to 
$$W_\mathrm{loc}^s(E_{\mu_r})= \Biggl\{E_{\mu_r}+\sum _{j=1}^nc_jv_j: c_j=0 \mbox{ except } c_i \mbox{ with } \mu_r\notin(\lambda_i,\mu_i) \Biggr\}, $$

 at \(E_{\mu_{r}}\). Hence, the stable manifold of \(E_{\mu_{r}}\) is 
$$W^s(E_{\mu_r})\subset\bigl\{(x_1, \ldots,x_n): x_i=0 \mbox{ if } \mu_r\in( \lambda_{i},\mu_{i})\bigr\}, $$

 and \(W^{s}(E_{\mu_{r}})\cap\varOmega=\emptyset\).
1.3 A.3 The Proof of Theorem 1
To prove Theorem 1, we need the following three lemmas. We note that the following proofs are similar to those in Butler and Wolkowicz (1985). We present them for the sake of completeness of the paper.

                    Lemma 4

                    
                      If lim
                        t→∞
                      x
                      
                        i
                      (t)>0, then lim
                        t→∞
                      L(t)=λ
                      
                        i
                      
                      or
                      μ
                      
                        i
                      
                      and lim
                        t→∞
                      x
                      
                        j
                      (t)=0 for
                      j≠i.

                  
                    Proof

                    Since lim
                        t→∞
                      x
                      
                        i
                      (t) exists and it is positive, and \(|x_{i}''(t)|\) is bounded, then \(x_{i}'(t)\) converges to 0 as t goes to infinity, i.e., 
$$g_i\bigl(L(t)\bigr)-d_i\to0 \quad\mbox{as } t\to \infty. $$

 Therefore, lim
                        t→∞
                      L(t)=λ
                      
                        i
                       or μ
                      
                        i
                      .

                    For j≠i, we prove lim
                        t→∞
                      x
                      
                        j
                      (t)=0 by contradiction. First, we assume lim
                        t→∞
                      x
                      
                        j
                      (t)>0, then by the similar argument as above, we obtain that lim
                        t→∞
                      L(t)=λ
                      
                        j
                       or μ
                      
                        j
                      , a contradiction. Thus, lim
                        t→∞
                      x
                      
                        j
                      (t) does not exist and lim sup
                        t→∞
                      x
                      
                        j
                      (t)>0. Then there exists a subsequence t
                      
                        m
                       increases to infinity as m goes to infinity, and x
                      
                        j
                      (t
                      
                        m
                      ) converges to lim sup
                        t→∞
                      x
                      
                        j
                      (t) and \(x_{j}'(t_{m})=0\). Hence, g
                      
                        j
                      (L(t
                      
                        m
                      ))−d
                      
                        j
                      =0 and L(t
                      
                        m
                      )=λ
                      
                        j
                       or μ
                      
                        j
                      , a contradiction to lim
                        t→∞
                      L(t)=λ
                      
                        i
                       or μ
                      
                        i
                      . Thus, we have lim
                        t→∞
                      x
                      
                        j
                      (t)=0. □

                  
                    Lemma 5

                    
                      If lim
                        t→∞
                      L(t)=γ, then
                      γ∈{I
                      0, the endpoints of a component of
                      S}. 
	
                          1.
                          
                            
                              If
                              γ=I
                              0, then
                              I
                              0∉S, and lim
                                t→∞
                              x
                              
                                i
                              (t)=0 for all
                              i.

                          
                        
	
                          2.
                          
                            
                              If
                              γ=λ
                              
                                i
                              
                              or
                              μ
                              
                                i
                              , the endpoint of a component of
                              S, then
                              γ<I
                              0
                              and
                              \(\lim_{t\to\infty}x_{i}(t)=x_{\lambda_{i}}\)
                              or
                              \(x_{\mu_{i}}\)
                              and lim
                                t→∞
                              x
                              
                                j
                              (t)=0 for
                              j≠i.

                          
                        


                    
                  
                    Proof

                    We prove by contradiction. If not, then γ∉{I
                      0, the endpoints of a component of S}. There are two possibilities: γ∈S and γ∉S.

                    If γ∈S, from the assumption lim
                        t→∞
                      L(t)=γ, then for ϵ>0 there exists some i and T
                      
                        ϵ
                      >0 such that L(t)⊂(λ
                      
                        i
                      ,μ
                      
                        i
                      ) for t≥T
                      
                        ϵ
                      . It follows that \(x_{i}'(t)\geq0\) for t≥T
                      
                        ϵ
                      , and from the fact x
                      
                        i
                      (t) is bounded above, then lim
                        t→∞
                      x
                      
                        i
                      (t)>0. By Lemma 4, we have that γ=lim
                        t→∞
                      L(t)=λ
                      
                        i
                       or μ
                      
                        i
                      . Since γ is not endpoints of S, there exists j≠i such that γ∈(λ
                      
                        j
                      ,μ
                      
                        j
                      ). It follows that L(t)⊂(λ
                      
                        j
                      ,μ
                      
                        j
                      ) for all large t. By similar argument as above, we have lim
                        t→∞
                      L(t)=λ
                      
                        j
                       or μ
                      
                        j
                      , a contradiction.

                    If γ∉S, then for ϵ>0 there exists T
                      
                        ϵ
                      >0 s.t. L(t)∈(γ−ϵ,γ+ϵ)⊂S
                      c for t≥T
                      
                        ϵ
                      . Hence \(\frac{x_{i}'(t)}{x_{i}(t)}=g_{i}(L(t))-d_{i}<0\) for all i for t≥T
                      
                        ϵ
                      . Therefore, lim
                        t→∞
                      x
                      
                        i
                      (t)=0 for all i, and lim
                        t→∞
                      L(t)=I
                      0, a contradiction. 
	
                          1.
                          
                            Let γ=I
                              0. Assume I
                              0∈S and from the convergence of L(t), there exists i such that L(t)∈(λ
                              
                                i
                              ,μ
                              
                                i
                              ) for all t is large. By similar argument as above, we have lim
                                t→∞
                              x
                              
                                i
                              (t)>0 and lim
                                t→∞
                              L(t)=λ
                              
                                i
                               or μ
                              
                                i
                              , it is a contradiction. Thus, I
                              0∉S.

                            Now we prove lim
                                t→∞
                              x
                              
                                i
                              (t)=0 for all i by contradiction. First we assume that there exists i such that lim
                                t→∞
                              x
                              
                                i
                              (t)>0. Then lim
                                t→∞
                              L(t)=λ
                              
                                i
                               or μ
                              
                                i
                              , a contradiction. Assume lim
                                t→∞
                              x
                              
                                i
                              (t) does not exist and lim sup
                                t→∞
                              x
                              
                                i
                              (t)>0. Then there exists a sequence {t
                              
                                m
                              } increases to infinity as t goes to infinity such that \(x_{i}'(t_{m})=0\) and lim
                                m→∞
                              x
                              
                                i
                              (t
                              
                                m
                              )=lim sup
                                t→∞
                              x
                              
                                i
                              (t). It follows that g
                              
                                i
                              (L(t
                              
                                m
                              ))−d
                              
                                i
                              =0 and L(t
                              
                                m
                              )=λ
                              
                                i
                               or μ
                              
                                i
                               for all m, a contradiction to γ=I
                              0. Thus, lim
                                t→∞
                              x
                              
                                i
                              (t)=0 for all i.

                          
                        
	
                          2.
                          
                            It is clear that γ<I
                              0, since L(t)≤I
                              0 for all t. lim
                                t→∞
                              x
                              
                                j
                              (t)=0 for j≠i follows from the above argument. Thus, it follows that \(\lim_{t\to\infty}L(t)= \lim_{t\to\infty}[I_{0} e^{-k_{i} x_{i}(t)}]=\lambda_{i}\) or μ
                              
                                i
                              , or equivalently \(\lim_{t\to\infty}x_{i}(t)=x_{\lambda_{i}}\) or \(x_{\mu_{i}}\). □

                          
                        


                    
                  
                    Lemma 6

                    
                      L(t) converges as
                      t
                      goes to infinity.

                  
                    Proof

                    If not, then there exist increasing sequences {t
                      
                        m
                      },{τ
                      
                        m
                      } such that 
$$L'(t_m)=0, \lim_{m\to\infty}L(t_m)= \limsup_{t\to\infty}L(t):=\overline{L}, $$


                      $$L'(\tau_m)=0, \lim_{m\to\infty}L( \tau_m)=\liminf_{t\to\infty }L(t):=\underline{L}. $$

 Note that there are some i∈{1,2,…,n} such that x
                      
                        i
                      (t) do not tend to zero. Since 
$$L'(t_m)=-L(t_m) \Biggl[\sum _{i=1}^{n}k_ix_i'(t_m) \Biggr]=0, $$

 for each m there are some j
                      
                        m
                      ∈{1,2,…,n} satisfies \(x_{j_{m}}'(t_{m})\geq0\). There exists some j such that j
                      
                        m
                      =j for infinitely many m. For this j, we choose a subsequence of {t
                      
                        m
                      }, also named {t
                      
                        m
                      }, such that \(x_{j}'(t_{m})\geq0\). It follows that L(t
                      
                        m
                      )∈[λ
                      
                        j
                      ,μ
                      
                        j
                      ] for all m and \(\overline{L}\in[\lambda_{j},\mu_{j}]\). Similarly, we can find some k and a subsequence of {τ
                      
                        m
                      }, also named {τ
                      
                        m
                      }, such that L(τ
                      
                        m
                      )∈[λ
                      
                        k
                      ,μ
                      
                        k
                      ] for all m and \(\underline{L}\in[\lambda_{k},\mu_{k}]\).

                    If \(\overline{L}\in[\lambda_{j},\mu_{j}]\subset[\lambda_{p_{1}},\mu_{q_{1}}]\) and \(\underline{L}\in[\lambda_{k},\mu_{k}]\subset[\lambda_{p_{2}},\mu_{q_{2}}]\) where \((\lambda_{p_{1}},\mu_{q_{1}})\) and \((\lambda_{p_{2}},\mu_{q_{2}})\) are two disjoint components of S. Then there exists an increasing sequence {s
                      
                        m
                      } with t
                      
                        m
                      <s
                      
                        m
                      <τ
                      
                        m
                       such that L′(s
                      
                        m
                      )<0 and \(L(s_{m})\in(\mu_{q_{2}},\lambda_{p_{1}})\cap S^{c}\) for all m. Hence, \(x_{i}'(s_{m})<0\) for all i and L′(s
                      
                        m
                      )>0, a contradiction.

                    Thus, [λ
                      
                        j
                      ,μ
                      
                        j
                      ] and [λ
                      
                        k
                      ,μ
                      
                        k
                      ] belong to the same set [λ
                      
                        p
                      ,μ
                      
                        q
                      ], that is, \(\overline{L}\) and \(\underline{L}\) belong to [λ
                      
                        p
                      ,μ
                      
                        q
                      ], where (λ
                      
                        p
                      ,μ
                      
                        q
                      ) is a component of S.

                    If there does not exist γ∈Γ, Γ={λ
                      
                        i
                      , μ
                      
                        i
                      :i=1,2,…,n}, s.t. \(\gamma\in(\underline{L},\overline{L})\), then there exists some r s.t. L(t)∈[λ
                      
                        r
                      ,μ
                      
                        r
                      ]⊂[λ
                      
                        p
                      ,μ
                      
                        q
                      ] for all large t. Then we have \(x_{r}'(t)>0\) for all large t. From the boundedness of x
                      
                        r
                      , it follows that \(\lim_{t\to\infty}x_{r}(t)=x_{r}^{*}\geq0\) and lim
                        t→∞
                      L(t)=λ
                      
                        r
                       or μ
                      
                        r
                      , a contradiction.

                    Thus, there exists some γ∈Γ s.t. \(\gamma\in(\underline{L},\overline{L})\), let γ
                      1, γ
                      2 be two consecutive elements of Γ such that \(\gamma_{1}<\underline{L}<\gamma_{2}\). Since L(t) oscillates, there exists T
                      1<T
                      2 such that L(T
                      1)=L(T
                      2)=γ
                      2, γ
                      1<L(t)≤γ
                      2 for t∈[T
                      1,T
                      2] and L′(T
                      1)<0<L′(T
                      2). From 
$$L'(t)=-L(t) \Biggl[\sum_{i=1}^{n}k_ix_i'(t) \Biggr], $$

 we have 
$$\sum_{i=1}^{n}k_ix_i'(T_1)>0> \sum_{i=1}^{n}k_ix_i'(T_2). $$

 We divide the above summation into two parts, one is \(x_{i}'(T_{j})<0\), i.e. g
                      
                        i
                      (γ
                      2)<d
                      
                        i
                      , the other is \(x_{i}'(T_{j})>0\), i.e. g
                      
                        i
                      (γ
                      2)>d
                      
                        i
                      . Therefore, we have 
$$\sum_{g_i(\gamma_2)<d_i}k_ix_i'(T_1)+ \sum_{g_i(\gamma_2)>d_i}k_ix_i'(T_1) >\sum_{g_i(\gamma_2)<d_i}k_ix_i'(T_2)+ \sum_{g_i(\gamma_2)>d_i}k_ix_i'(T_2), $$

 and 
[image: ]

                    (15)
                

 For the case g
                      
                        i
                      (γ
                      2)<d
                      
                        i
                      , i.e., γ
                      2∉(λ
                      
                        i
                      ,μ
                      
                        i
                      ), then L([T
                      1,T
                      2]) is disjoint from (λ
                      
                        i
                      ,μ
                      
                        i
                      ). Hence, \(x_{i}'(t)<0\) for t∈[T
                      1,T
                      2] and x
                      
                        i
                      (T
                      2)<x
                      
                        i
                      (T
                      1). For the case g
                      
                        i
                      (γ
                      2)>d
                      
                        i
                      , i.e., λ
                      
                        i
                      <γ
                      2<μ
                      
                        i
                      , we have L([T
                      1,T
                      2])⊂(λ
                      
                        i
                      ,μ
                      
                        i
                      ). Hence \(x_{i}'(t)>0\) for t∈[T
                      1,T
                      2] and x
                      
                        i
                      (T
                      2)>x
                      
                        i
                      (T
                      1). Thus, 
[image: ]

 a contradiction to (15). Hence, the theorem holds. □

                  

Rights and permissions
Reprints and permissions


About this article
Cite this article
Hsu, SB., Lin, CJ., Hsieh, CH. et al. Dynamics of Phytoplankton Communities Under Photoinhibition.
                    Bull Math Biol 75, 1207–1232 (2013). https://doi.org/10.1007/s11538-013-9852-3
Download citation
	Received: 08 November 2012

	Accepted: 29 April 2013

	Published: 22 May 2013

	Issue Date: July 2013

	DOI: https://doi.org/10.1007/s11538-013-9852-3


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Competition for light
	Photoinhibition
	Allee effect
	Competitive facilitation
	Alternative stable states








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					54.144.67.40
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    