Skip to main content

Advertisement

Log in

Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The parasite Trypanosoma cruzi, known for causing Chagas’ disease, is spread via insect vectors from the triatomine family. T. cruzi is maintained in sylvatic vector-host transmission cycles in certain parts of the Americas. Communication between the cycles occurs mainly through movement (migration) of the insect vectors. In this study, we develop a cellular automaton (CA) model in order to study invasion of a hypothetical strain of T. cruzi through the region defined by the primary sylvatic cycles in northern Mexico and parts of the southeastern United States. The model given is a deterministic CA, which can be described as a large metapopulation model in the format of a dynamical system with 9,376 equations. The migration rates in the model, used as coupling parameters between cells in the CA, are estimated by summing up the proportion of vectors crossing patch boundaries (i.e., crossing from one cell to another). Specifically, we develop methods for estimating speed and direction of invasion as a function of vector migration rates, including preference for a particular direction of migration. We develop two methods for estimating invasion speed: via orthogonal local velocity components and by direct computation of magnitude and direction of an overall velocity vector given a front created by cells identified as being invaded by the epidemic. Results indicate that invasion speed is greatly affected by both the physical and the epidemiological landscapes through which the infection wave passes. A power-law fit suggests that invasion speed increases at slightly less than the square root of increases in migration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Crawford, B. A., & Kribs-Zaleta, C. M. (2013a). Vector migration and dispersal rates for sylvatic T. cruzi transmission. Ecol. Complex.. doi:10.1016/j.ecocom.2012.11.003.

    Google Scholar 

  • Crawford, B. A., & Kribs-Zaleta, C. M. (2013b, in press). A metapopulation model for T. cruzi sylvatic transmission with vector migration. Math. Biosci. Eng.

  • Devillers, H., Lobry, J. R., & Menu, F. (2008). An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations. J. Theor. Biol., 255, 307–315.

    Article  Google Scholar 

  • Dorn, P., Buekens, P., Hanford, E. (2007). Whac-a-mole: future trends in Chagas disease transmission and a global perspective on disease control. Futur. Microbiol., 2, 365–367.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.

    Article  Google Scholar 

  • Fu, S., & Milne, G. (2003). Epidemic modelling using cellular automata. In Proceedings of the Australian conference on artificial life.

    Google Scholar 

  • Huang, W., Han, M., & Liu, K. (2010). Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng., 7, 51–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Kot, M., Lewis, M. A., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.

    Article  Google Scholar 

  • Kribs Zaleta, C. (2010). Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the U.S. PLOS Neglected Trop. Dis., 4(4), e656. pp. 1–14.

    Article  Google Scholar 

  • Lambert, R. C., Kolivras, K. N., Resler, L. M., Brewster, C. C., & Paulson, S. L. (2008). The potential for emergence of Chagas disease in the United States. Geospatial Health, 2, 227–239.

    Google Scholar 

  • Lewis, M., Renclawowicz, J., & van den Driessche, P. (2006). Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol., 68, 3–23.

    Article  MathSciNet  Google Scholar 

  • Medlock, J., & Kot, M. (2003). Spreading disease: integro-differential equations old and new. Math. Biosci., 184, 201–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B, 39, 283–326.

    MathSciNet  MATH  Google Scholar 

  • Murray, J. D., Stanley, E. A., & Brown, D. L. (1986). On the spatial spread of rabies among foxes. Proc. R. Soc. Lond., 229, 111–1150.

    Article  Google Scholar 

  • Roellig, D. M., Brown, E. L., Barnabé, C., Tibayrenc, M., Steurer, F. J., & Yabsley, M. J. (2008). Molecular typing of Trypanosoma cruzi isolates, United States. Emerg. Infect. Dis., 14, 1123–1125.

    Article  Google Scholar 

  • Schönfisch, B. (1995). Propagation of fronts in cellular automata. Physica D, 80, 433–450.

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    MathSciNet  MATH  Google Scholar 

  • Slimi, R., El Yacoubi, S., Dumonteil, E., & Gourbière, S. (2009). A cellular automata model for Chagas disease. Appl. Math. Model., 33, 1072–1085.

    Article  MathSciNet  MATH  Google Scholar 

  • Sirakoulis, G. C., Karafyllidis, I., & Thanailakis, A. (2000). A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model., 133, 209–223.

    Article  Google Scholar 

  • Sun, G. Q., Liu, Q. X., Jin, Z., Chakraborty, A., & Li, B. L. (2010). Influence of infection rate and migration on extinction of disease in spatial epidemics. J. Theor. Biol., 624, 95–103.

    Article  MathSciNet  Google Scholar 

  • White, S., Martín del Rey, A., & Rodríguez Sánchez, G. (2007). Modeling epidemics using cellular automata. Appl. Comput. Math., 186, 193–202.

    Article  MATH  Google Scholar 

  • Yabsley, M., Barnes, J., Ellise, A., Kjos, S., & Roxanne, C. (2012). Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and a host of a putative novel Trypanosoma species. Vector-Borne Zoonotic Dis., 13, 1–9.

    Google Scholar 

Download references

Acknowledgements

This research was supported by a 2008 Norman Hackerman Advanced Research Program grant, and by the National Science Foundation under Grant DMS-1020880. Conclusions are those of the authors, and do not reflect the opinions of the funding sources. The authors also wish to acknowledge Christopher Hall and Michael Yabsley for discussions of the underlying biology, and Gaik Ambartsoumian and James Grover for suggestions which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britnee A. Crawford.

Appendix: Equations and Assumptions

Appendix: Equations and Assumptions

The system contains 9,376 equations. Each cell contains anywhere from 4 to 8 equations, depending on the specific patch location. The equations in (1) are representative of a patch 2 interior cell, which contains both species of vector and both hosts. Each state variable contains two subscripts: one identifying the species (S-T. sanguisuga, G-T. gerstaeckeri, R-raccoon, W-woodrat) and the other representing the cell location (i represents the current cell, while n, s, e, w represents the 4 possible adjacent cells (north, south, east, and west) to the current cell. Each vector equation contains 8 migration terms, representing the bidirectional movement between cells assuming a von Neumann radius. Not every equation in every cell will contain all migration terms. Specific migration terms will be 0 if there is no corresponding vector species population in the specific adjacent cell or if the current cell is on a grid boundary. The parameter definitions and values are given in Table 11.

Table 11 Parameter definitions and values
Table 12 Values for sequence of lateral dispersal distances, {b j } (in units m) and values for Ψ (units proportion/m2) from Crawford and Kribs-Zaleta (2013a). The generating function and derivation for Ψ is given in Crawford and Kribs-Zaleta (2013a)
$$\begin{aligned} \dot{S}_S[i,j] =&r_S \biggl(1- \frac{N_S[i,j]}{K_S[i,j]} \biggr)N_S[i,j]- \biggl(q_S \beta_R\frac{I_R[i,j]}{N_R[i,j]}+(1-q_S)\beta_{WS} \frac{I_W[i,j]}{N_W[i,j]} \biggr) \\&{}\times S_S[i,j]-\mu_S S_S[i,j] -(M_{sN}+M_{sE}+M_{sS}+M_{sW})S_S[i,j] \\&{}+M_{sN} S_S[i+1,j]+M_{sE} S_S[i,j-1]+M_{sS} S_S[i-1,j] \\&{}+M_{sW} S_S[i,j+1] \\\dot{I}_S[i,j] =& \biggl(q_S\beta_R \frac{I_R[i,j]}{N_R[i,j]}+(1-q_S)\beta _{WS}\frac{I_W[i,j]}{N_W[i,j]} \biggr)S_S[i,j]-\mu_S I_S[i,j] \\&{}-(M_{sN}+M_{sE}+M_{sS}+M_{sW})I_S[i,j]+M_{sN} I_S[i+1,j] \\&{}+M_{sE} I_S[i,j-1]+M_{sS} I_S[i+1,j]+M_{sW} I_S[i,j+1] \\\dot{S}_R[i,j] =&r_R \bigl(S_R[i,j]+(1-p_R)I_R[i,j] \bigr) \biggl(1-\frac {N_R[i,j]}{K_R[i,j]} \biggr)-\beta_{S2} \frac{I_S[i,j]}{N_R[i,j]}S_R[i,j] \\&{}-\mu_R S_R[i,j] \\\dot{I}_R[i,j] =&p_Rr_R I_R[i,j] \biggl(1-\frac{N_R[i,j]}{K_R[i,j]} \biggr)+\beta_{S2} \frac{I_S[i,j]}{N_R[i,j]}S_R[i,j]-\mu_R I_R[i,j] \\\dot{S}_G[i,j] =&r_G \biggl(1-\frac{N_G[i,j]}{K_G[i,j]} \biggr)N_G[i,j]-\beta _{W2}\frac{I_W[i,j]}{N_W[i,j]}S_G[i,j]- \mu_G S_G[i,j] \\&{}-(M_{gN}+M_{gE}+M_{gS}+M_{gW})S_G[i,j]+M_{gN} S_G[i+1,j] \\&{}+M_{gE} S_G[i,j-1]+M_{gS} S_G[i-1,j]+M_{gW} S_G[i,j+1] \\\dot{I}_G[i,j] =&\beta_{W2}\frac{I_W[i,j]}{N_W[i,j]}S_G[i,j]- \mu_G I_G[i,j] \\&{}-(M_{gN}+M_{gE}+M_{gS}+M_{gW})I_G[i,j] \\&{}+M_{gN} I\bigl(G[i+1,j]\bigr)+M_{gE} I_G[i,j-1]+M_{gS} I_G[i-1,j] \\&{}+M_{gW} I_G[i,j+1] \\\dot{S}_W[i,j] =&r_W \bigl(S_W[i,j]+(1-p_W)I_W[i,j] \bigr) \biggl(1-\frac {N_W[i,j]}{K_W[i,j]} \biggr) \\&{}- \biggl((1-q_W) \beta_G\frac{I_G[i,j]}{N_W[i,j]}+q_W\beta_{SW} \frac{I_S[i,j]}{N_W[i,j]} \biggr)S_W[i,j] \\&{}-\mu_W S_W[i,j] \\\dot{I}_W[i,j] =&p_W r_W I_W[i,j] \biggl(1-\frac{N_W[i,j]}{K_W[i,j]} \biggr)+ \biggl((1-q_W) \beta_G\frac{I_G[i,j]}{N_W[i,j]} \\&{}+q_W\beta_{SW} \frac {I_S[i,j]}{N_W[i,j]} \biggr)S_W[i,j] -\mu_W I_W[i,j] \end{aligned}$$
(1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, B.A., Kribs-Zaleta, C.M. & Ambartsoumian, G. Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration. Bull Math Biol 75, 1051–1081 (2013). https://doi.org/10.1007/s11538-013-9840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9840-7

Keywords

Navigation