Skip to main content

Advertisement

Log in

On the Exact Measure of Disease Spread in Stochastic Epidemic Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The basic reproduction number, R 0, is probably the most important quantity in epidemiology. It is used to measure the transmission potential during the initial phase of an epidemic. In this paper, we are specifically concerned with the quantification of the spread of a disease modeled by a Markov chain. Due to the occurrence of repeated contacts taking place between a typical infective individual and other individuals already infected before, R 0 overestimates the average number of secondary infections. We present two alternative measures, namely, the exact reproduction number, R e0, and the population transmission number, R p , that overcome this difficulty and provide valuable insight. The applicability of R e0 and R p to control of disease spread is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, L. J. S. (2003). An introduction to stochastic processes with applications to biology. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Andersson, H., & Britton, T. (2000). Springer lecture notes in statistics: Vol. 151. Stochastic epidemic models and their statistical analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Andreasen, V. (2011). The final size of an epidemic and its relation to the basic reproduction number. Bull. Math. Biol., 73, 2305–2321.

    Article  MathSciNet  Google Scholar 

  • Artalejo, J. R., & Lopez-Herrero, M. J. (2011). The SIS and SIR stochastic epidemic models: a maximum entropy approach. Theor. Popul. Biol., 80, 256–264.

    Article  Google Scholar 

  • Artalejo, J. R., Economou, A., & Lopez-Herrero, M. J. (2010). On the number of recovered individuals in the SIS and SIR stochastic epidemic models. Math. Biosci., 228, 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Artalejo, J. R., Economou, A., & Lopez-Herrero, M. J. (2012). Stochastic epidemic models revisited: analysis of some continuous performance measures. J. Biol. Dyn., 6, 189–211.

    Article  MathSciNet  Google Scholar 

  • Bacaër, N., & Gomes, M. G. M. (2009). On the final size of epidemics with seasonality. Bull. Math. Biol., 71, 1954–1966.

    Article  MathSciNet  MATH  Google Scholar 

  • Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. London: Charles Griffin & Company Ltd.

    MATH  Google Scholar 

  • Ball, F., & Nåsell, I. (1994). The shape of the size distribution of an epidemic in a finite population. Math. Biosci., 123, 167–181.

    Article  MATH  Google Scholar 

  • Böckh, R. (1886). Statistisches Fahrbuch der Stadt Berlin, Zwölfter Jahrgang. Statistik des Jahres (pp. 30–31). Berlin: P. Stankiewicz.

    Google Scholar 

  • Britton, T. (2010). Stochastic epidemic models: a survey. Math. Biosci., 225, 24–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. (1989). Introduction to numerical linear algebra and optimisation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cross, P. C., Lloyd-Smith, J. O., Johnson, P. L. F., & Getz, W. M. (2005). Duelling time scales of host movement and disease recovery determine invasion of disease in structured populations. Ecol. Lett., 8, 587–595.

    Article  Google Scholar 

  • de Koejier, A. A., Diekmann, O., & de Jong, M. C. M. (2008). Calculating the extinction of a reactivating virus, in particular bovine herpes virus. Math. Biosci., 212, 111–131.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Wiley series in mathematical and computational biology. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: Wiley.

    Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., de Jong, M. C. M., & Metz, J. A. J. (1998). A deterministic epidemic model taking account of repeated contacts between the same individuals. J. Appl. Probab., 35, 448–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., Heesterbeek, H., & Britton, T. (2013). Mathematical tools for understanding infectious disease dynamics. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Forrester, M., & Pettitt, A. N. (2005). Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect. Control Hosp. Epidemiol., 26, 598–606.

    Article  Google Scholar 

  • Green, D. M., Kiss, I. Z., & Zao, R. R. (2006). Parametrization of individual-based models: comparisons with deterministic mean-field models. J. Theor. Biol., 239, 289–297.

    Article  Google Scholar 

  • Heesterbeek, J. A. P., & Dietz, K. (1996). The concept of R 0 in epidemic theory. Stat. Neerl., 50, 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Heffernan, J. M., Smith, R. J., & Wahl, I. M. (2005). Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2, 281–293.

    Article  Google Scholar 

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hotta, L. K. (2010). Bayesian melding estimation of a stochastic SEIR model. Math. Popul. Stud., 17, 101–111.

    Article  MathSciNet  Google Scholar 

  • Keeling, M. J., & Grenfell, B. T. (2000). Individual-based perspectives on R 0. J. Theor. Biol., 203, 51–61.

    Article  Google Scholar 

  • Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Keeling, M. J., & Ross, J. V. (2008). On methods for studying stochastic disease dynamics. J. R. Soc. Interface, 5, 171–181.

    Article  Google Scholar 

  • Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems. Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  • Li, J., Blakeley, D., & Smith, R. J. (2011). The failure of R 0. Comput. Math. Methods Med., 2011, 527610.

    Article  MathSciNet  Google Scholar 

  • Ma, J. L., & Earn, D. J. D. (2006). Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol., 68, 679–802.

    Article  MathSciNet  Google Scholar 

  • Nåsell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol., 211, 11–27.

    Article  Google Scholar 

  • Nåsell, I. (2011). Springer lecture notes in mathematics: Vol. 2022. Extinction and quasi-stationarity in the stochastic logistic SIS model. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Nisbet, R. M., & Gurney, W. S. C. (2003). Modelling fluctuating populations. Caldwell: Blackburn Press.

    Google Scholar 

  • Norden, R. H. (1982). On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Probab., 14, 687–708.

    Article  MathSciNet  MATH  Google Scholar 

  • Orsel, K., Bouma, A., Dekker, A., Stegeman, J. A., & de Jong, M. C. M. (2009). Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows. Prev. Vet. Med., 88, 158–163.

    Article  Google Scholar 

  • Pellis, L., Ball, F., & Trapman, P. (2012). Reproduction numbers for epidemic models with households and other social structures. I. Definition and calculation of R 0. Math. Biosci., 235, 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: the art of scientific computing. New York: Cambridge University Press.

    Google Scholar 

  • Roberts, M. G. (2007). The pluses and minuses of R 0. J. R. Soc. Interface, 4, 946–961.

    Google Scholar 

  • Roberts, M. G. (2012). Epidemic models with uncertainty in the reproduction number. J. Math. Biol. doi:10.1007/s00285-012-0540-y.

    Google Scholar 

  • Stone, P., Wilkinson-Herbots, H., & Isham, V. (2008). A stochastic model for head lice infections. J. Math. Biol., 56, 743–763.

    Article  MathSciNet  MATH  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Wang, L., Magal, P., Wang, Y., Zhuo, J., Lu, X., & Ruan, S. (2011). Modelling the transmission dynamics of methicillin-resistant Staphylococcus aureus in Beijing Tongren hospital. J. Hosp. Infect., 79, 302–308.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees whose comments and suggestions led to improvements in the manuscript. We are also grateful to our colleagues A. Economou, G. Lythe, C. Molina-Paris, and M. Rodriguez for helpful remarks. This work was supported by the Government of Spain (Department of Science and Innovation) and the European Commission through project MTM2011-23864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Artalejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artalejo, J.R., Lopez-Herrero, M.J. On the Exact Measure of Disease Spread in Stochastic Epidemic Models. Bull Math Biol 75, 1031–1050 (2013). https://doi.org/10.1007/s11538-013-9836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9836-3

Keywords

Navigation