Skip to main content
Log in

Extending the Conditions of Application of an Inversion of the Hodgkin–Huxley Gating Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present an inversion of the Hodgkin–Huxley formalism to estimate initial conditions and model parameters, including functions of voltage, from the solutions of the underlying ordinary differential equation (ODE) subjected to multiple voltage step stimulations. As such, the procedure constitutes a means to estimate the parameters including functions of voltage of an Hodgkin–Huxley formalism from experimental data.

The basic idea was developed in a previous communication (SIAM J. Appl. Math. 64:1264–1274, 2009). The inversion in question applies to currents exhibiting activation and inactivation, but the version, as published previously, cannot estimate the unknowns for channels that rapidly inactivate just after a brief opening. In such cases, the amplitude of the current, in a given voltage range, is too small to be detectable by the instrumentation using previously applied experimental protocols. This is, for example, the case for the sodium channels in a number of excitable tissue for potential in the vicinity of the cell resting potential. The current communication extends the inversion procedure in a manner to overcome this limitation.

Furthermore, within the inversion framework, we can determine whether the data at the basis of the estimation sufficiently constrains the estimation problem, i.e., whether it is complete. We exploit this element of our method to document a set of stimulation protocols that constitute a complete data set for the purpose of inverting the Hodgkin–Huxley formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bassingthwaighte, J. (2012). NSR physiome project. University of Washington. http://www.physiome.org.

  • Beaumont, J., Roberge, F., & Lemieux, D. (1993a). Estimation of the steady-state characteristics of the Hodgkin–Huxley model from voltage-clamp data. Math. Biosci., 115(2), 145–186.

    Article  MATH  Google Scholar 

  • Beaumont, J., Roberge, F., & Leon, L. (1993b). On the interpretation of voltage-clamp data using the Hodgkin–Huxley Model. Math. Biosci., 115(1), 65–101.

    Article  MATH  Google Scholar 

  • Beaumont, J., Davidenko, N., Davidenko, J. M., & Jalife, J. (1998). Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J., 75(1), 1–14.

    Article  Google Scholar 

  • Bower, J., & Beeman, D., (2012). Genesis. University of Texas and University of Colorado. http://genesis-sim.org/.

  • Cordeiro, J. M., Mazza, M., Goodrow, R., Ulahannan, N., Antzelevitch, C., & Di Diego, J. M. (2008). Functionally distinct sodium channels in ventricular epicardial and endocardial cells contribute to a greater sensitivity of the epicardium to electrical depression. Am. J. Physiol., Heart Circ. Physiol., 295(1), H154–H162.

    Article  Google Scholar 

  • Ebihara, L., & Johnson, E. (1980). Fast sodium current in cardiac muscle. A quantitative description. Biophys. J., 32(2), 779–790.

    Article  Google Scholar 

  • Ermentrout, G. B., Terman, D. H., Ermentrout, G. B., & Terman, D. H. (2010). Interdisciplinary applied mathematics: Vol. 35. The Hodgkin–Huxley equations. New York: Springer.

    Google Scholar 

  • Grandi, E., Pasqualini, F., & Bers, D. (2010). A novel computational model of the human ventricular action potential and ca transient. J. Mol. Cell. Cardiol., 48, 112–121.

    Article  Google Scholar 

  • Hines, M., Moore, J., Carnevale, T., Morse, T., & Shepherd, G. N. (2012). Neuron. Yale University. http://www.neuron.yale.edu/neuron.

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction an excitable nerve. J. Physiol., 117, 500–544.

    Google Scholar 

  • Lee, J., Smaill, B., & Smith, N. (2006). Hodgkin–Huxley type ion channel characterization: an improved method of voltage clamp experiment parameter estimation. J. Theor. Biol., 242(1), 123–134.

    Article  MathSciNet  Google Scholar 

  • Loew, L., & Vcell (2012). The virtual cell. University of Connecticut. http://www.nrcam.uchc.edu/about/about_vcell.html.

  • McCormick, D., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model—still standing? Nature, 445, E1–E2.

    Article  Google Scholar 

  • Murphy, L., Renodin, D., Antzelevitch, C., Di Diego, J. M., & Cordeiro, J. M. (2011). Extracellular proton depression of peak and late Na+ current in the canine left ventricle. Am. J. Physiol., Heart Circ. Physiol., 301(3), H936–H944.

    Article  Google Scholar 

  • Nielsen, P. (2012) Cellml. International collaborative effort. University of Auckland.

  • Noble, D., Garny, A., & Noble, P. J. (2012). How the Hodgkin–Huxley equations inspired the cardiac physiome project. J. Physiol., 1–30.

  • O’hara, T., Virág, L., et al. (2011). Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol., 7(5), e1002.

    Google Scholar 

  • Sobie, E. (2009). Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys. J., 96(4), 1264–1274.

    Article  Google Scholar 

  • Wang, G., & Beaumont, J. (2004). Parameter estimation of the Hodgkin–Huxley gating model: an inversion procedure. SIAM J. Appl. Math., 64(4), 1249–1267.

    Article  MathSciNet  MATH  Google Scholar 

  • Willms, A., Baro, D., Harris-Warrick, R., & Guckenheimer, J. (1999). An improved parameter estimation method for Hodgkin–Huxley models. J. Comput. Neurosci., 6, 145–168.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

NSF grant TG-BCS110013 (to J. Beaumont), SUNY Doctoral Diversity in Science, Technology, Engineering, and Mathematics Fellowship (to A.E. Raba), American Health Assistance Foundation (to J. M. Cordeiro), National Heart, Lung, and Blood Institute Grant HL-47678 (to C. Antzelevitch) and NYSTEM grant # C026424 (to C. Antzelevitch). We are grateful to anonymous reviewer #1 who has thoroughly studied the proof of Lemma 1 and suggested important corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley E. Raba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raba, A.E., Cordeiro, J.M., Antzelevitch, C. et al. Extending the Conditions of Application of an Inversion of the Hodgkin–Huxley Gating Model. Bull Math Biol 75, 752–773 (2013). https://doi.org/10.1007/s11538-013-9832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9832-7

Keywords

Navigation