Skip to main content
Log in

Stochastic Pattern Formation and Spontaneous Polarisation: The Linear Noise Approximation and Beyond

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We review the mathematical formalism underlying the modelling of stochasticity in biological systems. Beginning with a description of the system in terms of its basic constituents, we derive the mesoscopic equations governing the dynamics which generalise the more familiar macroscopic equations. We apply this formalism to the analysis of two specific noise-induced phenomena observed in biologically inspired models. In the first example, we show how the stochastic amplification of a Turing instability gives rise to spatial and temporal patterns which may be understood within the linear noise approximation. The second example concerns the spontaneous emergence of cell polarity, where we make analytic progress by exploiting a separation of time-scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschuler, S. J., Angenent, S. B., Wang, Y., & Wu, L. F. (2008). On the spontaneous emergence of cell polarity. Nature, 454, 886–889.

    Article  Google Scholar 

  • Biancalani, T., Fanelli, D., & Di Patti, F. (2010). Stochastic Turing patterns in the Brusselator model. Phys. Rev. E, 81, 046215. doi:10.1103/PhysRevE.81.046215.

    Article  Google Scholar 

  • Biancalani, T., Galla, T., & McKane, A. J. (2011). Stochastic waves in a Brusselator model with nonlocal interaction. Phys. Rev. E, 84, 026201. doi:10.1103/PhysRevE.84.026201.

    Article  Google Scholar 

  • Biancalani, T., Rogers, T., & McKane, A. J. (2012). Noise-induced metastability in biochemical networks. Phys. Rev. E, 86, 010106(R). doi:10.1103/PhysRevE.86.010106.

    Article  Google Scholar 

  • Black, A. J., & McKane, A. J. (2012). Stochastic formulation of ecological models and their applications. Trends Ecol. Evol., 27, 337–345. doi:10.1016/j.tree.2012.01.014.

    Article  Google Scholar 

  • Boland, R. P., Galla, T., & McKane, A. J. (2009). Limit cycles, complex Floquet multipliers and intrinsic noise. Phys. Rev. E, 79, 051131.

    Article  MathSciNet  Google Scholar 

  • Bonachela, J. A., Munoz, M. A., & Levin, S. A. (2012). Patchiness and demographic noise in three ecological examples. J. Stat. Phys., 148, 723–739.

    Article  MATH  Google Scholar 

  • Bromwich, T. (1926). An introduction to the theory of infinite series. London: Chelsea.

    MATH  Google Scholar 

  • Butler, T. C., & Goldenfeld, N. (2009). Robust ecological pattern formation induced by demographic noise. Phys. Rev. E, 80, 030902(R). doi:10.1103/PhysRevE.80.030902.

    Article  Google Scholar 

  • Butler, T. C., & Goldenfeld, N. (2011). Fluctuation-driven Turing patterns. Phys. Rev. E, 84, 011112. doi:10.1103/PhysRevE.84.011112.

    Article  Google Scholar 

  • Butler, T. C., Benayounc, M., Wallace, E., van Drongelenc, W., Goldenfeld, N., & Cowane, J. (2012). Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations. Proc. Natl. Acad. Sci. USA, 109, 606–609. doi:10.1073/pnas.1118672109.

    Article  Google Scholar 

  • Chaikin, P. M., & Lubensky, T. C. (2000). Principles of condensed matter physics (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cross, M. C., & Greenside, H. S. (2009). Pattern formation and dynamics in non-equilibrium systems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Datta, S., Delius, G. W., & Law, R. (2010). A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems. Bull. Math. Biol., 72, 1361–1382. doi:10.1007/s11538-009-9496-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Gardiner, C. W. (2009). Handbook of stochastic methods for physics, chemistry and the natural sciences (4th ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.

    Article  Google Scholar 

  • Glansdorff, P., & Prigogine, I. (1971). Thermodynamic theory of structure, stability and fluctuations. Chichester: Wiley-Interscience.

    MATH  Google Scholar 

  • Gupta, A. (2012). Stochastic model for cell polarity. Ann. Appl. Probab., 22, 827–859.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawson, M. J., Drawert, B., Khammash, M., Petzold, L., & Yi, T. M. (2012, submitted). Spatial stochastic dynamics enable robust cell polarization.

  • Lugo, C. A., & McKane, A. J. (2008). Quasi-cycles in a spatial predator-prey model. Phys. Rev. E, 78, 051911.

    Article  MathSciNet  Google Scholar 

  • Mehta, M. L. (1989). Matrix theory. India: Hindustan Publishing Corporation.

    Google Scholar 

  • Murray, J. D. (2008). Mathematical biology, Vol. II (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Ridolfi, L., Camporeale, C., D’Odorico, P., & Laio, F. (2011a). Transient growth induces unexpected deterministic spatial patterns in the Turing process. Europhys. Lett., 95, 18003. doi:10.1209/0295-5075/95/18003.

    Article  Google Scholar 

  • Ridolfi, L., D’Odorico, P., & Laio, F. (2011b). Noise-induced phenomena in the environmental sciences. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Risken, H. (1989). The Fokker–Planck equation—methods of solution and applications (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Rogers, T., McKane, A. J., & Rossberg, A. G. (2012a). Demographic noise can lead to the spontaneous formation of species. Europhys. Lett., 97, 40008. doi:10.1209/0295-5075/97/40008.

    Article  Google Scholar 

  • Rogers, T., McKane, A. J., & Rossberg, A. G. (2012b). Spontaneous genetic clustering in populations of competing organisms. Phys. Biol., 9, 066002.

    Article  Google Scholar 

  • Scott, M., Poulin, F. J., & Tang, H. (2011). Approximating intrinsic noise in continuous multispecies models. Proc. R. Soc. Lond. A, 467, 718–737. doi:10.1098/rspa.2010.0275.

    Article  MathSciNet  MATH  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72. doi:10.1098/rstb.1952.0012.

    Article  Google Scholar 

  • Van Kampen, N. G. (2007). Stochastic processes in physics and chemistry (3rd ed.). Amsterdam: Elsevier Science.

    MATH  Google Scholar 

  • Wiggins, S. (2003). Introduction to applied nonlinear dynamical systems and chaos (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Woolley, T. E., Baker, R. E., Gaffney, E. A., & Maini, P. K. (2011). Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E, 84, 046216. doi:10.1103/PhysRevE.84.046216.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part under EPSRC Grant No. EP/H02171X/1 (A.J.M. and T.R.). T.B. also wishes to thank the EPSRC for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. McKane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKane, A.J., Biancalani, T. & Rogers, T. Stochastic Pattern Formation and Spontaneous Polarisation: The Linear Noise Approximation and Beyond. Bull Math Biol 76, 895–921 (2014). https://doi.org/10.1007/s11538-013-9827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9827-4

Keywords

Navigation