Skip to main content

Advertisement

Log in

A Virtual Culture of CD4+ T Lymphocytes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The CD4+ T cell lineages Th1, Th2, Th17, and Treg, are mammalian cell types that differentiate from the common precursor naive CD4+ T cell. While there is a wealth of experimental data regarding the molecular and cellular signals involved in the differentiation of CD4+ T cells in vitro, there is still no consensus regarding the structure of the network of interactions at the molecular and cellular levels controlling this differentiation process. In this work, a virtual culture of cells is constructed by interconnecting several instances of an updated version of the regulatory network controlling the differentiation process of CD4+ T cells in mice. The virtual culture is a multi-compartment model with an instance of a regulatory network inside each compartment, thus simulating a simplified version of a cell culture in a well-stirred reactor. The virtual culture is able to describe the stable molecular expression patterns described for fully differentiated CD4+ T cells in mice, as well as the differentiation process from a precursor to a given effector cell in response to specific molecular stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F., & Napolitani, G. (2007). Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol., 8, 639–646.

    Article  Google Scholar 

  • Akdis, C. A. (2008). New insights into mechanisms of immunoregulation in 2007. J. Allergy Clin. Immunol., 122, 700–709.

    Article  Google Scholar 

  • Albert, R., & Wang, R. S. (2009). Discrete dynamic modeling of cellular signaling networks. Methods Enzymol., 467, 281–306.

    Article  Google Scholar 

  • Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L., & Kuchroo, V. K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature, 441, 235–238.

    Article  Google Scholar 

  • Bornholdt, S. (2008). Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface, 5, S85–S94.

    Article  Google Scholar 

  • Busse, D., de la Rosa, M., Hobiger, K., Thurley, K., Flossdorf, M., Scheffold, A., & Höfer, T. (2010). Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. USA, 107, 3058–3063.

    Article  Google Scholar 

  • Chang, J. T., Segal, B. M., Nakanishi, K., Okamura, H., & Shevach, E. M. (2000). The costimulatory effect of IL-18 on the induction of antigenspecific IFN-gamma production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor beta2 subunit. Eur. J. Immunol., 30, 1113–1119.

    Article  Google Scholar 

  • Chen, X. P., Losman, J. A., & Rothman, P. (2000). SOCS proteins, regulators of intracellular signaling. Immunity, 13, 287–290.

    Article  Google Scholar 

  • Chen, W., Jin, W., Hardegen, N., Lei, K., Li, L., Marinos, N., McGrady, G., & Wahl, S. M. (2003). Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med., 198, 1875–1886.

    Article  Google Scholar 

  • De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67–103.

    Article  Google Scholar 

  • Di Cara, A., Garg, A., De Micheli, G., Xenarios, I., & Mendoza, L. (2007). Dynamic simulation of regulatory networks using SQUAD. BMC Bioinform., 8, 462.

    Article  Google Scholar 

  • Diehl, S., Anguita, J., Hoffmeyer, A., Zapton, T., Ihle, J. N., Fikrig, E., & Rincón, M. (2000). Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity, 13, 805–815.

    Article  Google Scholar 

  • Elser, B., Lohoff, M., Kock, S., Giaisi, M., Kirchhoff, S., Krammer, P. H., & Li-Weber, M. (2002). IFN-γ represses IL-4 expression via IRF-1 and IRF-2. Immunity, 17, 703–712.

    Article  Google Scholar 

  • Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R., & Neurath, M. F. (2004). Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol., 172, 5149–5153.

    Google Scholar 

  • Folcik, V. A., An, G. C., & Orosz, C. G. (2007). The Basic Immune Simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor. Biol. Med. Model., 4, 39.

    Article  Google Scholar 

  • Gavin, M. A., Rasmussen, J. P., Fontenot, J. D., Vasta, V., Manganiello, V. C., Beavo, J. A., & Rudensky, A. Y. (2007). Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 445, 771–775.

    Article  Google Scholar 

  • Geard, N., & Willadsen, K. (2009). Dynamical approaches to modeling developmental gene regulatory networks. Birth Defects Res. C, Embryo Today, 87, 131–142.

    Article  Google Scholar 

  • Goodbourn, S., Didcock, L., & Randal, R. E. (2000). Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. J. Gen. Virol., 81, 2341–2364.

    Google Scholar 

  • Hamalainen, H., Zhou, H., Chou, W., Hashizume, H., Heller, R., & Lahesmaa, R. (2001). Distinct gene expression profiles of human type 1 and type 2 T helper cells. Genome Biol., 2, RESEARCH0022.

    Article  Google Scholar 

  • Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F., & Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J., 334, 297–314.

    Google Scholar 

  • Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M., & O’Garra, A. (1995). The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha betatransgenic model. J. Exp. Med., 182, 1579–1584.

    Article  Google Scholar 

  • Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. BioEssays, 31, 546–560.

    Article  Google Scholar 

  • Huang, Y., & Wange, R. L. (2004). T cell receptor signaling: beyond complex complexes. J. Biol. Chem., 279, 28827–28830.

    Article  Google Scholar 

  • Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., & Littman, D. R. (2006). The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL−17+ T helper cells. Cell, 126, 1121–1133.

    Article  Google Scholar 

  • Kanakaraj, P., Ngo, K., Wu, Y., Angulo, A., Ghazal, P., Harris, C. A., Siekierka, J. J., Peterson, P. A., & Fung-Leung, W. P. (1999). Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 response in IL-1 receptor-associated kinase (IRAK)-deficient mice. J. Exp. Med., 189, 1129–1138.

    Article  Google Scholar 

  • Kaufman, M., & Thomas, R. (1987). Model analysis of the bases of multistationarity in the humoral immune response. J. Theor. Biol., 129, 141–162.

    Article  Google Scholar 

  • Kaufman, M., Urbain, J., & Thomas, R. (1985). Towards a logical analysis of the immune response. J. Theor. Biol., 114, 527–561.

    Article  MathSciNet  Google Scholar 

  • Kerr, I. M., Costa-Pereira, A. P., Lillemeier, B. F., & Strobl, B. (2003). Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett., 546, 1–5.

    Article  Google Scholar 

  • Kestler, H. A., Wawra, C., Kracher, B., & Kühl, M. (2008). Network modeling of signal transduction: establishing the global view. BioEssays, 30, 1110–1125.

    Article  Google Scholar 

  • Kotenko, S. V., & Pestka, S. (2000). Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene, 19, 2557–2565.

    Article  Google Scholar 

  • Krebs, D. L., & Hilton, D. J. (2001). SOCS proteins: negative regulators of cytokine signaling. Stem Cells, 19, 378–387.

    Article  Google Scholar 

  • Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., Blank, R. B., Meylan, F., Siegel, R., Hennighausen, L., Shevach, E. M., & O’Shea, J. J. (2007). Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity, 26, 371–381.

    Article  Google Scholar 

  • Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V., Gadina, M., Sher, A., Paul, W. E., & O’Shea, J. J. (2001). T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA, 98, 15137–15142.

    Article  Google Scholar 

  • Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., Riethmacher, D., Si-Tahar, M., Di Santo, J. P., & Eberl, G. (2008). In vivo equilibrium of proinflammatory IL−17+ and regulatory IL−10+Foxp3+RORgammat+T cells. J. Exp. Med., 205, 1381–1393.

    Article  Google Scholar 

  • Losman, J. A., Chen, X. P., Hilton, D., & Rothman, P. (1999). Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol., 162, 3770–3774.

    Google Scholar 

  • Manu, Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A. R., Radulescu, O., Vanario-Alonso, C. E., Sharp, D. H., Samsonova, M., & Reinitz, J. (2009). Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Comput. Biol., 5, e1000303.

    Article  Google Scholar 

  • Mendoza, L. (2006). A network model for the control of the differentiation process in Th cells. Biosystems, 84, 101–114.

    Article  Google Scholar 

  • Mendoza, L., & Alvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for flowering in Arabidopsis thaliana. J. Theor. Biol., 193, 307–319.

    Article  Google Scholar 

  • Mendoza, L., & Pardo, F. (2010). A robust model to describe the differentiation of T-helper cells. Theory Biosci., 129, 283–293.

    Article  Google Scholar 

  • Mendoza, L., & Xenarios, I. (2006). A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model., 3, 13.

    Article  Google Scholar 

  • Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449, 819–826.

    Article  Google Scholar 

  • Moore, K. W., de Waal Malefyt, R., Coffman, R., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19, 683–765.

    Article  Google Scholar 

  • Mullen, A. C., High, F. A., Hutchins, A. S., Lee, H. W., Villarino, A. V., Livingston, D. M., Kung, A. L., Cereb, N., Yao, T. P., Yang, S. Y., & Reiner, S. L. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science, 292, 1907–1910.

    Article  Google Scholar 

  • Murphy, K. M., & Reiner, S. L. (2002). The lineage decisions on helper T cells. Nat. Rev. Immunol., 2, 933–944.

    Article  Google Scholar 

  • Naldi, A., Carneiro, J., Chaouiya, C., & Thieffry, D. (2010). Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput. Biol., 6, e1000912.

    Article  Google Scholar 

  • Novelli, F., D’Elios, M. M., Bernabei, P., Ozmen, L., Rigamonti, L., Almerigogna, F., Forni, G., & Del Prete, G. (1997). Expression and role in apoptosis of the alpha- and β-chains of the IFN-γ receptor in human Th1 and Th2 clones. J. Immunol., 159, 206–213.

    Google Scholar 

  • O’Shea, J. J., & Paul, W. E. (2010). Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science, 327, 1098–1102.

    Article  Google Scholar 

  • Osorio, F., LeibundGut-Landmann, S., Lochner, M., Lahl, K., Sparwasser, T., Eberl, G., & Reis e Sousa, C. (2008). DC activated via dectin-1 convert Treg into IL-17 producers. Eur. J. Immunol., 38, 3274–3281.

    Article  Google Scholar 

  • Ouyang, W., Löhning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., & Murphy, K. M. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity, 12, 27–37.

    Article  Google Scholar 

  • Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, S., Zhang, R., Singh, K., Vega, F., To, W., Wagner, J., O’Farrell, A. M., McClanahan, T., Zurawski, S., Hannum, C., Gorman, D., Rennick, D. M., Kastelein, D. A., de Waal Malefyt, R., & Moore, K. W. (2002). A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol., 168, 5699–5708.

    Google Scholar 

  • Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., & Dong, C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol., 6, 1133–1141.

    Article  Google Scholar 

  • Porter, C. M., & Clipstone, N. A. (2002). Sustained NFAT signaling promotes a Th1-like pattern of gene expression in primary murine CD4+ T cells. J. Immunol., 168, 4936–4945.

    Google Scholar 

  • Radhakrishnan, S., Cabrera, R., Schenk, E. L., Nava-Parada, P., Bell, M. P., Van Keulen, V. P., Marler, R. J., Felts, S. J., & Pease, L. R. (2008). Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol., 181, 3137–3147.

    Google Scholar 

  • Ranganath, S., & Murphy, K. M. (2001). Structure and specificity of GATA proteins in Th2 development. Mol. Cell. Biol., 21, 2716–2725.

    Article  Google Scholar 

  • Rigamonti, L., Ariotti, S., Losana, G., Gradini, R., Russo, M. A., Jouanguy, E., Casanova, J. L., Forni, G., & Novelli, F. (2000). Surface expression of the IFN-γR2 chain is regulated by intracellular trafficking in human T lymphocytes. J. Immunol., 164, 201–207.

    Google Scholar 

  • Rincon, M., & Flavell, R. A. (1997). Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol. Cell. Biol., 17, 1522–1534.

    Google Scholar 

  • Rodríguez, A., Sosa, D., Torres, L., Molina, B., Frías, S., & Mendoza, L. (2012). A Boolean network model of the FA/BRCA pathway. Bioinformatics, 28, 858–866.

    Article  Google Scholar 

  • Saito, H., Morita, Y., Fujimoto, M., Narazaki, M., Naka, T., & Kishimoto, T. (2000). IFN regulatory factor-1-mediated transcriptional activation of mouse STAT-induced STAT inhibitor-1 gene promoter by IFN-γ. J. Immunol., 164, 5833–5843.

    Google Scholar 

  • Sánchez, L., & Thieffry, D. (2003). Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol., 224, 517–537.

    Article  Google Scholar 

  • Sánchez, L., Chaouiya, C., & Thieffry, D. (2008). Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol., 52, 1059–1075.

    Article  Google Scholar 

  • Sánchez-Corrales, Y. E., Alvarez-Buylla, E. R., & Mendoza, L. (2010). The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J. Theor. Biol., 264, 971–983.

    Article  Google Scholar 

  • Santoni, D., Pedicini, M., & Castiglione, F. (2008). Implementation of a regulatory gene network to stimulate the TH1/2 differentiation in an agent-based model of hypersensitivity reactions. Bioinformatics, 24, 1374–1380.

    Article  Google Scholar 

  • Schmidt-Weber, C. B., Alexander, S. I., Henault, L. E., James, L., & Lichtman, A. H. (1999). IL-4 enhances IL-10 gene expression in murine Th2 cells in the absence of TCR engagement. J. Immunol., 162, 238–244.

    Google Scholar 

  • Shevach, E. M., DiPaolo, R. A., Andersson, J., Zhao, D. M., Stephens, G. L., & Thornton, A. M. (2006). The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells. Immunol. Rev., 212, 60–73.

    Article  Google Scholar 

  • Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.

    Article  Google Scholar 

  • Smeltz, R. B., Chen, J., Hu-Li, J., & Shevach, E. M. (2001). Regulation of interleukin (IL)-18 receptor alpha chain expression on CD4+ T cells during T helper (Th)1/Th2 differentiation: critical downregulatory role of IL-4. J. Exp. Med., 194, 143–153.

    Article  Google Scholar 

  • Sommer, V. H., Clemmensen, O. J., Nielsen, O., Wasik, M., Lovato, P., Brender, C., Eriksen, K. W., Woetmann, A., Kaestel, C. G., Nissen, M. H., Ropke, C., Skov, S., & Ødum, N. (2004). In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia, 18, 1288–1295.

    Article  Google Scholar 

  • Steinman, L. (2007). A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med., 13, 139–145.

    Article  Google Scholar 

  • Szabo, S. J., Dighe, A. S., Gubler, U., & Murphy, K. M. (1997). Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med., 185, 817–824.

    Article  Google Scholar 

  • Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G., & Glimcher, L. H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100, 655–669.

    Article  Google Scholar 

  • Thierfelder, W. E., van Deursen, J. M., Yamamoto, K., Tripp, R. A., Sarawar, S. R., Carson, R. T., Sangster, M. Y., Vignali, D. A., Doherty, P. C., Grosveld, G. C., & Ihle, J. N. (1996). Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature, 382, 171–174.

    Article  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001a). Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos, 11, 170–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001b). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11, 180–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Usui, T., Nishikomori, R., Kitani, A., & Strober, W. (2003). GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rβ2 chain or T-bet. Immunity, 18, 415–428.

    Article  Google Scholar 

  • Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24, 179–189.

    Article  Google Scholar 

  • Wan, Y. Y., & Flavell, R. A. (2007). Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature, 445, 766–770.

    Article  Google Scholar 

  • Wan, Y. Y., & Flavell, R. A. (2009). How diverse–CD4 effector T cells and their functions. Mol. Cell. Biol., 1, 20–36.

    Article  Google Scholar 

  • Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., & Murphy, K. M. (2006). Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24, 677–688.

    Article  Google Scholar 

  • Weinstein, N., & Mendoza, L. (2012). Building qualitative models of plant regulatory networks with SQUAD. Front. Plant Sci., 3, 72.

    Article  Google Scholar 

  • Williams, L. M., & Rudensky, A. Y. (2007). Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol., 8, 277–284.

    Article  Google Scholar 

  • Wittmann, D. M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A., Klamt, S., & Theis, F. J. (2009). Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol., 3, 98.

    Article  Google Scholar 

  • Yang, X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D., Watowich, S. S., & Dong, C. (2007). STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem., 282, 9358–9363.

    Article  Google Scholar 

  • Zhong, X., Gao, W., Degauque, N., Bai, C., Lu, Y., Kenny, J., Oukka, M., Strom, T. B., & Rothstein, T. L. (2007). Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur. J. Immunol., 37, 2400–2404.

    Article  Google Scholar 

  • Zhou, L., Lopes, J. E., Chong, M. M. W., Ivanov, I. I., Min, R., Victora, G. D., Shen, Y., Du, J., Rubtsov, Y. P., Rudensky, A. Y., Ziegler, S. F., & Littman, D. R. (2008). TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature, 453, 236–240.

    Article  Google Scholar 

  • Zhou, L., Chong, M. M. W., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30, 646–655.

    Article  Google Scholar 

Download references

Acknowledgement

The author wants to acknowledge the invaluable comments and suggestions to improve the present manuscript made by two anonymous referees as well as by the guest editors Dr. Claudine Chaouiya and Dr. Elisabeth Remy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Mendoza.

Electronic Supplementary Material

Below is the links to the electronic supplementary material.

CD4_T_cell_metwork.m (TXT 4 kB)

CD4_T_virtual_culture_cells.m (TXT 47 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, L. A Virtual Culture of CD4+ T Lymphocytes. Bull Math Biol 75, 1012–1029 (2013). https://doi.org/10.1007/s11538-013-9814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9814-9

Keywords

Navigation