Skip to main content
Log in

Coarse Grained Normal Mode Analysis vs. Refined Gaussian Network Model for Protein Residue-Level Structural Fluctuations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate several approaches to coarse grained normal mode analysis on protein residual-level structural fluctuations by choosing different ways of representing the residues and the forces among them. Single-atom representations using the backbone atoms C α , C, N, and C β are considered. Combinations of some of these atoms are also tested. The force constants between the representative atoms are extracted from the Hessian matrix of the energy function and served as the force constants between the corresponding residues. The residue mean-square-fluctuations and their correlations with the experimental B-factors are calculated for a large set of proteins. The results are compared with all-atom normal mode analysis and the residue-level Gaussian Network Model. The coarse-grained methods perform more efficiently than all-atom normal mode analysis, while their B-factor correlations are also higher. Their B-factor correlations are comparable with those estimated by the Gaussian Network Model and in many cases better. The extracted force constants are surveyed for different pairs of residues with different numbers of separation residues in sequence. The statistical averages are used to build a refined Gaussian Network Model, which is able to predict residue-level structural fluctuations significantly better than the conventional Gaussian Network Model in many test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, A., & Gohlke, H. (2006). Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins, 63, 1038–1051.

    Article  Google Scholar 

  • Bahar, I., Atilgan, A. R., & Erman, B. (1997). Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, folding &. Design, 2, 173–181.

    Google Scholar 

  • Bahar, I., Atilgan, A. R., Demirel, M., & Erman, B. (1998). Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys. Rev. Lett., 80, 2733–2736.

    Article  Google Scholar 

  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2006). Biochemistry. New York: Freeman.

    Google Scholar 

  • Berman, H., et al. (2010) Pdb data bank annual report. http://www.rcsb.orgpdb.

  • Brooks, B. R., & Karplus, M. (1983). Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA, 80, 6571–6575.

    Article  Google Scholar 

  • Brooks, C. L. III, Karplus, M., & Pettitt, B. M. (1989). Proteins: a theoretical perspective of dynamics, structure, and thermodynamics. New York: Wiley.

    Google Scholar 

  • Brooks, B. R., et al. (2009). CHARMM: the biomolecular simulation program. J. Comput. Chem., 30, 1545–1614.

    Article  Google Scholar 

  • Cui, Q., & Bahar, I. (2006). Normal mode analysis: theory and application to biological and chemical systems. London/Boca Raton: Chapman & Hall/CRC Press.

    Google Scholar 

  • Demerdash, O. N. A., & Mitchell, J. C. (2012). Density-cluster NMA: a new protein decomposition technique for coarse-grained normal mode analysis. Proteins, 80, 1766–1779.

    Google Scholar 

  • Drenth, J. (2006). Principles of protein X-ray crystallography. Berlin: Springer.

    Google Scholar 

  • Go, N., Noguti, T., & Nishikawa, T. (1983). Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA, 80, 3696–3700.

    Article  Google Scholar 

  • Haliloglu, T., Bahar, I., & Erman, B. (1997). Gaussian dynamics of folded proteins. Phys. Rev. Lett., 79, 3090–3092.

    Article  Google Scholar 

  • Huang, Y., Bonett, S., Kloczkowski, A., Jernigan, R., & Wu, Z. (2011). Statistical measures on protein residue-level structural properties. J. Struct. Funct. Genomics, 12, 119–136.

    Article  Google Scholar 

  • Jacobs, D. J., Rader, A. J., Kuhn, L. A., & Thorpe, M. F. (2001). Protein flexibility predictions using graph theory. Proteins, 44, 150–165.

    Article  Google Scholar 

  • Kondrashov, D., Cui, Q., & Phillips, G. Jr. (2006). Optimization and evaluation of a coarse-grained model of protein motion using X-ray crystal data. Biophys. J., 91, 2760–2767.

    Article  Google Scholar 

  • Kuszewski, J., Gronenborn, A. M., & Clore, G. M. (1996). Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci., 5, 1067–1080.

    Article  Google Scholar 

  • Levitt, M., Sander, C., & Stern, P. S. (1985). Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol., 181, 423–447.

    Article  Google Scholar 

  • Li, G., & Cui, Q. (2002). A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(21)-ATPase. Biophys. J., 83, 2457–2474.

    Article  Google Scholar 

  • Lu, M., & Ma, J. (2008). A minimalist network model for coarse-grained normal mode analysis and its application to biomolecular x-ray crystallography. Proc. Natl. Acad. Sci. USA, 105, 15358–15363.

    Article  Google Scholar 

  • Lu, M., & Ma, J. (2011). Normal mode analysis with molecular geometry restraints: bridging molecular mechanics and elastic models. Arch. Biochem. Biophys., 508, 64–71.

    Article  Google Scholar 

  • Micheletti, C., Carloni, P., & Maritan, A. (2004). Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and Gaussian models. Proteins, 55, 635–645.

    Article  Google Scholar 

  • Mitchell, J. C., Kerr, R., & Ten Eyck, L. F. (2001). Rapid atomic density methods for molecular shape characterization. J. Mol. Graph. Model., 19, 325–330.

    Article  Google Scholar 

  • Miyazawa, S., & Jernigan, R. L. (1985). Estimation of effective inter-residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules, 18, 534–552.

    Article  Google Scholar 

  • Morin, D. (2008). Introduction to classical mechanics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Schlick, T. (2002). Molecular modeling and simulation—an interdisciplinary guide. Berlin: Springer.

    MATH  Google Scholar 

  • Schuyler, A. D., & Chirikjian, G. S. (2004). Normal mode analysis of proteins: a comparison of rigid cluster modes with Ca coarse graining. J. Mol. Graph. Model., 22, 183–193.

    Article  Google Scholar 

  • Sippl, M. J. (1990). Calculation of conformational ensembles from potentials of mean force. J. Mol. Biol., 213, 859–883.

    Article  Google Scholar 

  • Steczkiewicz, K., et al. (2011). Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step. Proc. Natl. Acad. Sci. USA, 108, 9443–9448.

    Article  Google Scholar 

  • Tama, F., Gadea, F. X., Marques, O., & Sanejouand, Y. H. (2000). Building-block approach for determining low-frequency normal modes of macromolecules. Proteins, 41, 1–7.

    Article  Google Scholar 

  • Taner, Z. S., & Jernigan, R. L. (2006). Optimizing the parameters of the Gaussian network model for ATP-binding proteins. In Q. Cui & I. Bahar (Eds.), Normal mode analysis: theory and applications to biological and chemical systems (pp. 171–186).

    Google Scholar 

  • Tirion, M. (1996). Large amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys. Rev. Lett., 77, 1905–1908.

    Article  Google Scholar 

  • Wu, D., Jernigan, R., & Wu, Z. (2007a). Refinement of NMR-determined protein structures with database derived mean force potentials. Proteins, 68, 232–242.

    Article  Google Scholar 

  • Wu, Y., Lu, M., Chen, M., Li, J., & Ma, J. (2007b). OPUS-Ca: a knowledge-based potential function requiring only ca positions. Protein Sci., 16, 1449–1463.

    Article  Google Scholar 

  • Yang, L., Song, G., Carriquiry, A., & Jernigan, R. L. (2008). Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure, 16, 321–330.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by the NIH/ /NIGMS grant R01GM081680 and by the NSF/ /DMS grant DMS0914354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Koo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JK., Jernigan, R. & Wu, Z. Coarse Grained Normal Mode Analysis vs. Refined Gaussian Network Model for Protein Residue-Level Structural Fluctuations. Bull Math Biol 75, 124–160 (2013). https://doi.org/10.1007/s11538-012-9797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9797-y

Keywords

Navigation