Skip to main content
Log in

The Influence of Hindered Transport on the Development of Platelet Thrombi Under Flow

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Vascular injury triggers two intertwined processes, platelet deposition and coagulation, and can lead to the formation of an intravascular clot (thrombus) that may grow to occlude the vessel. Formation of the thrombus involves complex biochemical, biophysical, and biomechanical interactions that are also dynamic and spatially-distributed, and occur on multiple spatial and temporal scales. We previously developed a spatial-temporal mathematical model of these interactions and looked at the interplay between physical factors (flow, transport to the clot, platelet distribution within the blood) and biochemical ones in determining the growth of the clot. Here, we extend this model to include reduction of the advection and diffusion of the coagulation proteins in regions of the clot with high platelet number density. The effect of this reduction, in conjunction with limitations on fluid and platelet transport through dense regions of the clot can be profound. We found that hindered transport leads to the formation of smaller and denser clots compared to the case with no protein hindrance. The limitation on protein transport confines the important activating complexes to small regions in the interior of the thrombus and greatly reduces the supply of substrates to these complexes. Ultimately, this decreases the rate and amount of thrombin production and leads to greatly slowed growth and smaller thrombus size. Our results suggest a possible physical mechanism for limiting thrombus growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adolph, R., Steed, D. L., Vorp, D. A., Webster, M. W., Kameneva, M. V., & Watkins, S. C. (1997). Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg., 25, 916–926.

    Article  Google Scholar 

  • Andre, P., Delaney, S. M., LaRocca, T., Vincent, D., DeGuzman, F., Jurek, M., Koller, B., Phillips, D. R., & Conley, P. B. (2003). P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest., 112, 398–406.

    Google Scholar 

  • Brass, L. F., Wannemacher, K. M., Ma, P., & Stalker, T. J. (2011). Regulating thrombus growth and stability to achieve an optimal response to injury. J. Thromb. Haemost., 9(1), 66–75.

    Article  Google Scholar 

  • Buddai, S. K., Layzer, J. M., Lu, G., Rusconi, C. P., Sullenger, B. A., Monroe, D. M., & Krishnaswamy, S. (2009). An anticoagulant RNA aptamer that inhibits proteinase-cofactor interactions within prothrombinase. J. Biol. Chem., 285, 5212–5223.

    Article  Google Scholar 

  • Celi, A., Merrill-Skoloff, G., Gross, P., Falati, S., Sim, D. S., Flaumenhaft, R., Furie, B. C., & Furie, B. (2003). Thrombus formation: Direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. J. Thromb. Haemost., 1, 60–68.

    Article  Google Scholar 

  • Clague, D. S., & Phillips, R. J. (1996). Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids, 8, 1720–1731.

    Article  MATH  Google Scholar 

  • Clague, D. S., & Phillips, R. J. (1997). A numerical calculation of the hydraulic permeability of three-dimensional disordered fibrous media. Phys. Fluids, 9, 1562–1572.

    Article  Google Scholar 

  • Colace, T. V., Muthard, R. W., & Diamond, S. L. (2012). Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arterioscler. Thromb. Vasc. Biol., 32(6), 1466–1476.

    Article  Google Scholar 

  • Crowl, L., & Fogelson, A. L. (2011). Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech., 676, 348–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Crowl, L. M., & Fogelson, A. L. (2010). Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Methods Biomed. Eng., 26, 471–487.

    Article  MathSciNet  MATH  Google Scholar 

  • Deen, W. M. (1997). Hindered transport of large molecules in liquid-filled pores. AIChE J., 33, 1409–1425.

    Article  Google Scholar 

  • Dill, K., & Bromberg, S. (2010). Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience (2nd ed.). New York: Garland Science.

    Google Scholar 

  • Eckstein, E. C., Tilles, A. W., & Millero, J.F., III (1988). Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res., 36, 31–39.

    Article  Google Scholar 

  • Fogelson, A. L., & Guy, R. D. (2008). Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng., 197, 2087–2104.

    Article  MathSciNet  MATH  Google Scholar 

  • Fogelson, A. L., & Guy, R. D. (2004). Platelet-wall interactions in continuum models of platelet aggregation: formulation and numerical solution. Math. Med. Biol., 21, 293–334.

    Article  MATH  Google Scholar 

  • Fogelson, A. L., Hussain, Y. H., & Leiderman, K. (2012). Blood clot formation under flow: the importance of factor xi depends strongly on platelet count. Biophys. J., 102, 10–18.

    Article  Google Scholar 

  • Fogelson, A. L., & Tania, N. (2005). Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol. Haemost. Thromb., 34, 91–108.

    Article  Google Scholar 

  • Furie, B., & Furie, B. C. (2005). Thrombus formation in vivo. J. Clin. Invest., 115(12), 3355–3362.

    Article  Google Scholar 

  • Happel, J., & Brenner, H. (1983). Low Reynolds number hydrodynamics. Hague: Nijhoff.

    Google Scholar 

  • Hathcock, J. J., & Nemerson, Y. (2004). Platelet deposition inhibits tissue factor activity: In vitro clots are impermeable to Factor Xa. Blood, 104(1), 123–127.

    Article  Google Scholar 

  • Hemker, H. C., & Kessels, H. (1991). Feedback mechanisms in coagulation. Haemostasis, 21, 189–196.

    Google Scholar 

  • Jackson, S. P. (2007). The growing complexity of platelet aggregation. Blood, 109, 5087–5095.

    Article  Google Scholar 

  • Jesty, J., & Nemerson, Y. (1995). The pathways of blood coagulation. In E. Beutler, M. Lichtman, & B. Coller (Eds.), Williams hematology (5th ed.) (pp. 1227–1238). New York: McGraw-Hill.

    Google Scholar 

  • Jordan, R. E., Oosta, G. M., Gardner, W. T., & Rosenberg, R. D. (1980). The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J. Biol. Chem., 255, 10081–10090.

    Google Scholar 

  • Kamath, P., & Krishnaswamy, S. (2008). Fate of membrane-bound reactants and products during the activation of human prothrombin by prothrombinase. J Biol Chem, 283, 30164–30173.

    Article  Google Scholar 

  • Keener, J. P., Sircar, S., & Fogelson, A. L. (2011). Kinetics of swelling gels. SIAM J. Appl. Math., 71, 854–875.

    Article  MathSciNet  MATH  Google Scholar 

  • Kosto, K. B., & Deen, W. M. (2004). Diffusivities of macromolecules in composite hydrogels. AIChE J., 50, 2648–2658.

    Article  Google Scholar 

  • Kuharsky, A. L., & Fogelson, A. L. (2001). Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J., 80, 1050–1074.

    Article  Google Scholar 

  • Leiderman, K., & Fogelson, A. L. (2011). Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol., 28, 47–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Leiderman, K., Miller, L. A., & Fogelson, A. L. (2008). The effects of spatial inhomogeneities on flow through the endothelial surface layer. J. Theor. Biol., 252, 313–325.

    Article  MathSciNet  Google Scholar 

  • LeVeque, R. J. (1996). High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal., 33, 627–665.

    Article  MathSciNet  MATH  Google Scholar 

  • Mann, K. G., Nesheim, M. E., Church, W. R., Haley, P., & Krishnaswamy, S. (1990). Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood, 76, 1–16.

    Google Scholar 

  • Neeves, K. B., Illing, D. A., & Diamond, S. L. (2010). Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys. J., 98(7), 1344–1352.

    Article  Google Scholar 

  • Nicholson, C. (2001). Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys., 64, 815–884.

    Article  Google Scholar 

  • Okorie, U., Denney, W. S., Chatterjee, M. S., Neeves, K. B., & Diamond, S. L. (2008). Determination of surface tissue factor thresholds that trigger coagulation at venous and arterial shear rates: amplification of 100 fM circulating tissue factor by flow. Blood, 111(7), 3507–3513.

    Article  Google Scholar 

  • oude Egbrink, M. G. A., Tangelder, G. J., Slaaf, D. W., & Reneman, R. S. (1988). Thromboembolic reaction following wall punction in arterioles and venules of the rabbit mesentery. Thromb. Haemost., 59, 23–28.

    Google Scholar 

  • Pluen, A., Boucher, Y., Ramanujan, S., McKee, T. D., Gohongi, T., di Tomaso, E., Brown, E. B., Izumi, Y., Campbell, R. B., Berk, D. A., & Jain, R. K. (2001). Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA, 98, 4628–4633.

    Article  Google Scholar 

  • Sahimi, M. (2010). Flow and transport in porous media and fractured rock. Weinheim: Wiley-VCH.

    Google Scholar 

  • Seligsohn, U. (2009). Factor XI deficiency in humans. J. Thromb. Haemost., 7, 84–87.

    Article  Google Scholar 

  • Stalker, T. J., Traxler, E. A., Diamond, S. L., & Brass, L. F. (2011). Development of a stable thrombotic core with limited access to plasma proteins during thrombus formation in vivo. Abstract 53rd ASH annual meeting and exposition, December 2011.

  • Steiakakis, E., Gamvroudis, C., & Alevios, G. (2012). Kozeny–Carman equation and hydraulic conductivity of compacted clayey soils. Geomaterials, 2, 37–41.

    Article  Google Scholar 

  • Tilles, A. W., & Eckstein, E. C. (1987). The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res., 33, 211.

    Article  Google Scholar 

  • Torquato, S. (2002). Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer.

    Book  Google Scholar 

  • Vaiyapuri, S., Jones, C. I., Sasikumar, P., Moraes, L. A., Munger, S. J., Wright, J. R., Ali, M. S., Sage, T., Kaiser, W. J., Tucker, K. L., Stain, C. J., Bye, A. P., Jones, S., Oviedo-Orta, E., Simon, A. M., Mahaut-Smith, M. P., & Gibbins, J. M. (2012). Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation, 125(20), 2479–2491.

    Article  Google Scholar 

  • Zhao, H., & Shaqfeh, E. S. G. (2011). Shear-induced platelet margination in a microchannel. Phys. Rev. E, 83, 061924.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF RTG Grant DMS-0943760, by NSF Grant DMS-0540779 and by NIGMS Grant R01-GM090203. The authors are very grateful to Jim Keener for numerous helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Leiderman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiderman, K., Fogelson, A.L. The Influence of Hindered Transport on the Development of Platelet Thrombi Under Flow. Bull Math Biol 75, 1255–1283 (2013). https://doi.org/10.1007/s11538-012-9784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9784-3

Keywords

Navigation