Skip to main content
Log in

On the Relationship of Steady States of Continuous and Discrete Models Arising from Biology

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Jaoudé, W., Ouattara, D., & Kaufman, M. (2009). From structure to dynamics: frequency tuning in the p53-mdm2 network: I. logical approach. J. Theor. Biol., 258(4), 561–577.

    Article  Google Scholar 

  • Abou-Jaoudé, W., Ouattara, D., & Kaufman, M. (2010). From structure to dynamics: frequency tuning in the p53–Mdm2 network: II. differential and stochastic approaches. J. Theor. Biol., 264(4), 1177–1189.

    Article  Google Scholar 

  • Albert, R., & Othmer, H. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila Melanogaster. J. Theor. Biol., 223(1), 1–18.

    Article  MathSciNet  Google Scholar 

  • Aracena, J. (2008). Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol., 70(5), 1398–1409.

    Article  MathSciNet  MATH  Google Scholar 

  • Bredon, G. (1993). Topology and geometry. Berlin: Springer.

    MATH  Google Scholar 

  • Chaves, M., Tournier, L., & Gouzé, J. (2010). Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor., 58(2–3), 217–232.

    Article  Google Scholar 

  • Ciliberto, A., Novak, B., & Tyson, J. (2005). Steady states and oscillations in the p53/Mdm2 network. Cell Cycle, 4(3), 488–493.

    Article  Google Scholar 

  • Cornish-Bowden, A. (1995). Fundamentals of enzyme kinetics. Colchester: Portland Press.

    Google Scholar 

  • Davidich, M., & Bornholdt, S. (2008). The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol., 255, 269–277.

    Article  Google Scholar 

  • Franke, R., Theis, F., & Klamt, S. (2010). From binary to multivalued to continuous models: the lac operon as a case study. J. Integr. Bioinform., 7(1), 151.

    Google Scholar 

  • Glass, L. (1975). Classification of biological networks by their qualitatively dynamics. J. Theor. Biol., 54, 85–107.

    Article  Google Scholar 

  • Glass, L., & Siegelmann, H. (2010). Logical and symbolic analysis of robust biological dynamics. Curr. Opin. Genet. Dev., 20(6), 644–649.

    Article  Google Scholar 

  • Goles, E. (1990). Neural and automata networks: dynamical behavior and applications. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2000). The symmetry perspective: from equilibrium to chaos in phase space and physical space. Basel: Birkhauser.

    Google Scholar 

  • Kauffman, S., & Glass, L. (1973). The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol., 39, 103–129.

    Article  Google Scholar 

  • Mendoza, L. (2006). A network model for the control of the differentiation process in Th cells. Biosystems, 84, 101–114.

    Article  Google Scholar 

  • Mendoza, L., & Xenarios, I. (2006). A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model., 3(13), 1–18.

    Google Scholar 

  • Mingarelli, A. (2005). The dynamics of general fuzzy cellular automata. In Computational science, ICCS 2005 (pp. 831–844). Berlin: Springer.

    Google Scholar 

  • Mingarelli, A. (2010). A classification scheme for fuzzy cellular automata with applications to ECA. J. Cell. Autom., 5(6), 445–467.

    MathSciNet  MATH  Google Scholar 

  • Mochizuki, A. (2005). An analytical study of the number of steady states in gene regulatory networks. J. Theor. Biol., 236, 291–310.

    Article  MathSciNet  Google Scholar 

  • Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling stochasticity and variability in gene regulatory networks. EURASIP J. Bioinform. Syst. Biol., 2012(1), 5.

    Article  Google Scholar 

  • Richard, A. (2009). Positive circuits and maximal number of fixed points in discrete dynamical systems. Discrete Appl. Math., 157(15), 3281–3288.

    Article  MathSciNet  MATH  Google Scholar 

  • Santillán, M. (2008). Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate. Biophys. J., 94(6), 2065–2081.

    Article  Google Scholar 

  • Snoussi, E. (1989). Qualitative dynamics of piecewise differential equations: a discrete mapping approach. Dyn. Stab. Syst., 4(3), 189–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, I., Golubitsky, M., & Pivato, M. (2003). Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst., 2(4), 609–646.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, R. (1990). Biological feedback. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Veliz-Cuba, A., Jarrah, A., & Laubenbacher, R. (2010). Polynomial algebra of discrete models in systems biology. Bioinformatics, 26(13), 1637–1643.

    Article  Google Scholar 

  • Veliz-Cuba, A., & Stigler, B. (2011). Boolean models can explain bistability in the lac operon. J. Comput. Biol., 18(6), 783–794.

    Article  MathSciNet  Google Scholar 

  • von Dassow, G., Meir, E., Munro, E., & Odell, G. (2000). The segment polarity network is a robust developmental module. Nature, 406(6792), 188–192.

    Article  Google Scholar 

  • Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D., Klamt, S., & Theis, F. (2009). Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol., 3(1), 98.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant DMS-1004766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Veliz-Cuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veliz-Cuba, A., Arthur, J., Hochstetler, L. et al. On the Relationship of Steady States of Continuous and Discrete Models Arising from Biology. Bull Math Biol 74, 2779–2792 (2012). https://doi.org/10.1007/s11538-012-9778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9778-1

Keywords

Navigation