Skip to main content

Advertisement

Log in

Hypoxia Inducible Factors-Mediated Inhibition of Cancer by GM-CSF: A Mathematical Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Under hypoxia, tumor cells, and tumor-associated macrophages produce VEGF (vascular endothelial growth factor), a signaling molecule that induces angiogenesis. The same macrophages, when treated with GM-CSF (granulocyte/macrophage colony-stimulating factor), produce sVEGFR-1 (soluble VEGF receptor-1), a soluble protein that binds with VEGF and inactivates its function. The production of VEGF by macrophages is regulated by HIF-1α (hypoxia inducible factor-1α), and the production of sVEGFR-1 is mediated by HIF-2α. Recent experiments measured the effect of inhibiting tumor growth by GM-CSF treatment in mice with HIF-1α-deficient or HIF-2α-deficient macrophages. In the present paper, we represent these experiments by a mathematical model based on a system of partial differential equations. We show that the model simulations agree with the above experiments. The model can then be used to suggest strategies for inhibiting tumor growth. For example, the model qualitatively predicts the extent to which GM-CSF treatment in combination with a small molecule inhibitor that stabilizes HIF-2α will reduce tumor volume and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60, 857–900.

    Article  MATH  Google Scholar 

  • Bosco, M. C., Puppo, M., Pastorino, S., Mi, Z., Melillo, G., Massazza, A., Rapisarda, S., & Varesio, L. (2004). Hypoxia selectively inhibits Monocyte Chemoattractant Protein-1 production by macrophages. J. Immunol., 172, 1681–1690.

    Google Scholar 

  • Braunstein, S., Karpisheva, K., Pola, J., Goldberg, C., Hochman, T., Yee, H., Cangiarella, J., Arju, R., Formenti, S. C., & Schneider, R. J. (2007). A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol. Cell, 28(3), 501–512.

    Article  Google Scholar 

  • Breward, C. J. W., Byrne, H. M., & Lewis, C. E. (2001). Modeling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. Eur. J. Appl. Math., 12, 529–556.

    Article  MathSciNet  MATH  Google Scholar 

  • Butterworth A, E., & Cater, D. (1967). Effect of lysolecithin on oxygen uptake of tumour cells polymorphonuclear leucocytes lymphocytes and macrophages in vitro. Br. J. Cancer, 21(2), 373389.

    Article  Google Scholar 

  • Caldwell, J., Locey, B., Clarke, M. F., Emerson, S. G., & Palsson, B. O. (1991). Influence of medium exchange schedules on metabolic, growth, and GM-CSF secretion rates of genetically engineered NIH-3T3 cells. Biotechnol. Prog., 7, 1–8.

    Article  Google Scholar 

  • Casciari, J. J., Sotirchos, S. V., & Sutherland, R. M. (1988). Glucose diffusivity in multicellular tumor spheroids. Cancer Res., 48, 3905–3909.

    Google Scholar 

  • Chaplain, M. (1995). The mathematical modeling of tumor angiogenesis and invasion. Acta Biotheor., 43, 387–402.

    Article  Google Scholar 

  • Chen, Y., Cairns, R., Papandreou, I., Koong, A., & Denko, N. C. (2009). Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PLoS ONE, 4(9), 27033.

    Google Scholar 

  • Curry, J., Eubank, T., Roberts, R., Wang, Y., Pore, N., Maity, A., & Marsh, C. (2008). M-CSF signals through the MARK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS ONE, 3(10), e3405.

    Article  Google Scholar 

  • Eubank, T., Galloway, M., Montague, C., Waldman, W., & Marsh, C. (2003). M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J. Immunol., 175(5), 2637–2643.

    Google Scholar 

  • Eubank, T., Roberts, R. D., Galoway M., Wang, Y., Cohn, D., & Marsh, C. (2004). GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity, 21, 831–842.

    Article  Google Scholar 

  • Eubank, T., Roberts, R. D., Khan, M., Curry, J., Nuovo, G. J., Kuppusamyl, P., & Marsh, C. (2009). Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res., 69(5), 2133–2140.

    Article  Google Scholar 

  • Eubank, T., Roda, J. M., Liu, H., O’Neil, T., & Marsh, C. (2011). Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes. Blood, 117(1), 323–331.

    Article  Google Scholar 

  • Gabhann, F. M., & Popel, A. S. (2004). Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol., Heart Circ. Physiol., 286, H153–H164.

    Article  Google Scholar 

  • Girgis-Gabardo, A., & Hassell, J. (2008). Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol. Prog., 22, 801–810.

    Google Scholar 

  • Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol., 1, 23–35.

    Article  Google Scholar 

  • Grabhann, F. M., & Popel, A. S. (2003). Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol., Heart Circ. Physiol., 286, H153–H164.

    Article  Google Scholar 

  • Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., & Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest., 116(6), 1494–1505.

    Article  Google Scholar 

  • Koshikawa, N., Iyozumi, A., Gassmann, M., & Takenaga, K. (2003). Constitutive upregulation of hypoxia-inducible factor 1α mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor over-expression upon hypoxic exposure. Oncogene, 22, 6717–6724.

    Article  Google Scholar 

  • Kuratsu, J., Yoshizato, K., Yoshimura, T., Leonard, E. J., Takeshima, H., & Ushio, Y. (1993). Quantitative study of monocyte chemoattractant Protein-1 (MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma. J. Natl. Cancer Inst., 85, 1836–1839.

    Article  Google Scholar 

  • Lawichi, S., Szmitkowski, M., & Wojtukiewicz, M. (2006). The pretreatment plasma level and diagnostic utility of M-CSF in benign breast tumor and breast cancer patients. Clin. Chim. Acta, 371, 112–116.

    Article  Google Scholar 

  • Leitzel, K., Ettenberg, S., Walsh, R., Abraham, J., Modur, V., Braendle, E., Evans, D., Ali, S., Demers, L., & Lipton, A. (2007). Elevated serum M-CSF level predicts reduced survival in metastatic breast cancer patients. J. Clin. Oncol., ASCO annual meeting proceedings I (25).

  • Leonard, E., Skeel, A., Yoshimura, T., & Rankin, J. (1991). Secretion of monocyte chemoattractant protein (MCP-1) by human mononuclear phagocytes. Adv. Exp. Med. Biol., 351, 55–64.

    Article  Google Scholar 

  • Less, J., Skalak, T., Sevick, E., & Jain, R. (1991). Microvascular architecture in a mammary-carcinoma—branching patterns and vessel dimensions. Cancer Res., 51, 265–273.

    Google Scholar 

  • Li, C. (1982). The glucose distribution in 9L rat brain multicell tumour spheroid and its effect on cell necrosis. Cancer, 50, 2066–2073.

    Article  Google Scholar 

  • Macdougall, J. D. B., & Mccabe, M. (1967). Diffusion coefficient of oxygen through tissues. Nature, 215, 1173–1174.

    Article  Google Scholar 

  • Marino, S., Hogue, I., Ray, C., & Kirschner, D. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178–196.

    Article  Google Scholar 

  • Melillo, G., Sausville, E., Cloud, K., Lahusen, T., Varesio, L., & Senderowicz, A. (1999). Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Res., 59(21), 5433–5437.

    Google Scholar 

  • Nalwaya, N., & Deen, W. (2008). Nitric oxide, oxygen, and superoxide formation and consumption in macrophage cultures. Chem. Res. Toxicol., 18, 486–493.

    Article  Google Scholar 

  • Oren, H., Duman, N., Abacioglu, H., Ozkan, H., & Irken, G. (2001). Association between serum macrophage Colony-Stimulating factor levels and monocyte and thrombocyte counts in healthy, hypoxic, and septic term neonates. Pediatrics, 108(2), 329–332.

    Article  Google Scholar 

  • Owen, M. R., & Sherratt, J. A. (1997). Pattern formation and spatiotemporal irregularity in a model for macrophage tumour interactions. J. Theor. Biol., 189(1), 63–80.

    Article  Google Scholar 

  • Owen, M. R., Byrne, H. M., & Lewis, C. E. (2004). Mathematical modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J. Theor. Biol., 226, 377–391.

    Article  MathSciNet  Google Scholar 

  • Papayianni, A., Alexopoulos, E., Giamalis, P., Gionanlis, L., Belechri, A., Koukoudis, P., & Memmos, D. (2002). Circulating levels of ICAM-1, VCAM-1, and MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and vascular events. Nephrol. Dial. Transplant., 17, 435–441.

    Article  Google Scholar 

  • Paweletz, N., & Knierim, M. (1989). Tumor-related angiogenesis. Crit. Rev. Oncol./Hematol., 9, 197–242.

    Article  Google Scholar 

  • Pettet, G., Byrne, H., McElwain, D., & Norbury, J. (1996). A model of wound-healing angiogenesis in soft tissue. Math. Biosci., 136, 35–63.

    Article  MATH  Google Scholar 

  • Pettet, G., Please, C., & Tindall, M. (2001). The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63, 231–257.

    Article  Google Scholar 

  • Plank, M., Sleeman, B., & Jones, P. F. (2004). A mathematical model of tumour anglogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J. Theor. Biol., 229, 435–454.

    Article  MathSciNet  Google Scholar 

  • Pollard, J. W. (1997). Role of colony-stimulating factor-1 in reproduction and development. Mol. Reprod. Dev., 46, 54–60.

    Article  Google Scholar 

  • Pyaskovskaya, O. N., Kolesnik, D. L., Kolobov, A. V., Vovyanko, S. I., & Solyanik, G. I. (2008). Analysis of growth kinetics and proliferative heterogeneity of lewis lung carcinoma cells growing as unfed culture. Exp. Oncol., 30(4), 269–275.

    Google Scholar 

  • Qian, B., Deng, Y., Hong Im, J., Muschel, R. J., Zou, Y., Li, J., Lang, R. A., & Pollard, J. W. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4(8), e6562.

    Article  Google Scholar 

  • Rapella, A., Negrioli, A., Melillo, G., Pastorino, S., Varesio, L., & Bosco, M. (2002). Flavopirisol inhibits vascular endothelial growth factor production induced by hypoxia or picolinic acid in human neuroblastoma. Int. J. Cancer, 99, 658–664.

    Article  Google Scholar 

  • Roda, J. M., Summer, L. A., Evans, R., Philips, G. S., Marsh, C. B., & Eubank, T. D. (2011). Hypoxia-inducible factor-2α regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis. J. Immunol., 187, 1970–1976.

    Article  Google Scholar 

  • Roda, J., Wang, Y., Sumner, L., Phillips, G., Eubank, T., & Marsh, C. (2012) Stabilization of HIF-2α induces SVEGFR-1 production from Tumor-associated macrophages and enhances the Anti-tumor effects of GM-CSF in murine melanoma model. J. Immunol., 189, 3168–3177.

    Article  Google Scholar 

  • Schugart, R. C., Friedman, A., Zhao, R., & Sen, C. K. (2008). Wound angiogenesis as a function of tissue oxygen tension. Proc. Natl. Acad. Sci. USA, 105(7), 2628–2633.

    Article  Google Scholar 

  • Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev., 3, 721–732.

    Google Scholar 

  • Shang, Z., Li, Z., & Li, J. (2006). VEGF is up-regulated by hypoxic stimulation and related to tumor angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int. J. Oral Maxillofac. Surg., 35, 533–538.

    Article  Google Scholar 

  • Stokes, C., & Lauffenburger, D. (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol., 152, 377–403.

    Article  Google Scholar 

  • Szomolay, B., Eubank, T., Roberts, R., Marsh, C., & Friedman, A. (2012). Modeling the inhibition of breast cancer growth by GM-CSF. J. Theor. Biol., 303, 141–151.

    Article  Google Scholar 

  • Tang, S., Liu, H., Rao, Q., Geng, Y., Zheng, G., Zheng, D., & Wu, K. (2000). Internalization and half-life of membrane-bound macrophage colony-simulating factor. Chin. Sci. Bull., 45(18), 1697–1703.

    Article  Google Scholar 

  • Utting, J. C., Flanagan, A. M., Brandao-Burch, A., Orriss, I. R., & Arnett, T. R. (2010). Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem. Funct., 28(5), 374–380.

    Article  Google Scholar 

  • Varney, M., Olsen, K. J., Mosley, R., & Singh, R. (2005). Paracrine regulation of vascular endothelial growth factor-an expression during macrophage-melanoma cell interaction: role of monocyte chemotactic protein-1 and macrophage colony-simulating factor. J. Interferon Cytokine Res., 25(11), 674–683.

    Article  Google Scholar 

  • Vaupel, P., Mayer, A., Briest, S., & Hockel, M. (2003). Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res., 63, 7634–7637.

    Google Scholar 

  • Vicioso, L., Gonzalez, F., Alvarez, M., Ribelles, N., Molina, M., Marquez, A., Perez, L., Matilla, A., & Alba, E. (2006). Elevated serum levels of vascular endothelial growth factor are associated with tumor-associated macrophages in primary breast cancer. Am. J. Clin. Pathol., 125, 111–118.

    Google Scholar 

  • Vincensini, D., Dedieu, V., Eliat, P. A., Vincent, C., Bailly, C., de Certaines, J., & Joffre, F. (2007). Magnetic resonance imaging measurements of vascular permeability and extracellular volume fraction of breast tumors by dynamic Gd-DTPA-enhanced relaxometry. J. Magn. Reson. Imaging, 25, 293–302.

    Article  Google Scholar 

  • Ward, J., & King, J. (1997). Mathematical modeling of avascular tumor growth. IMA J. Math. Appl. Med. Biol., 14, 39–69.

    Article  MATH  Google Scholar 

  • Ward, J., & King, J. (1999). Mathematical modeling of avascular tumor growth II: modeling growth saturation. IMA J. Math. Appl. Med. Biol., 16, 171–211.

    Article  MATH  Google Scholar 

  • Wathen, K., Sarvela, J., Stenman, F., Stenman, U., & Vuorela, P. (2011). Changes in serum concentrations of soluble vascular endothelial growth factor receptor-1 after pregnancy. Hum. Reprod., 26(1), 221–226.

    Article  Google Scholar 

  • Williams, M., Kelsey, S., & Newland, A. (1999). GM-CSF and stimulation of monocyte/macrophage function in vivo relevance and in vitro observations. Eur. J. Cancer, 35(3), S1–S22.

    Google Scholar 

  • Wu, F. T. H., Stefanini, M. O., Gabhann, F. M., & Popel, A. S. (2009). A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap. PLoS ONE, 4(4), e5108.

    Article  Google Scholar 

  • Wu, F. T. H., Stefanini, M. O., Gabhann, F. M., Kontos, C. D., Annex, B. H., & Popel, A. S. (2010). VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am. J. Physiol., Heart Circ. Physiol., 298, H2174–H2191.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation Award 0635561, NCI 5R00CA131552 (T.D.E.), and R01 HL067167 (C.B.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Roda, J.M., Marsh, C.B. et al. Hypoxia Inducible Factors-Mediated Inhibition of Cancer by GM-CSF: A Mathematical Model. Bull Math Biol 74, 2752–2777 (2012). https://doi.org/10.1007/s11538-012-9776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9776-3

Keywords

Navigation