Skip to main content
Log in

Probabilistic Approach for Predicting Periodic Orbits in Piecewise Affine Differential Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Piecewise affine models provide a qualitative description of the dynamics of a system, and are often used to study genetic regulatory networks. The state space of a piecewise affine system is partitioned into hyperrectangles, which can be represented as nodes in a directed graph, so that the system’s trajectories follow a path in a transition graph.

This paper proposes and compares two definitions of probability of transition between two nodes A and B of the graph, based on the volume of the initial conditions on the hyperrectangle A whose trajectories cross to B. The parameters of the system can thus be compared to the observed transitions between two hyperrectangles. This property may become useful to identify sets of parameters for which the system yields a desired periodic orbit with a high probability, or to predict the most likely periodic orbit given a set of parameters, as illustrated by a gene regulatory system composed of two intertwined negative loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Belta, C., Habets, L., & Kumar, V. (2002). Control of multi-affine systems on rectangles with applications to hybrid biomolecular networks. In Proceedings of the 41st IEEE conference decision and control (CDC02) (pp. 534–539).

    Google Scholar 

  • Büeler, B., Enge, A., & Fukuda, K. (2000). Exact volume computation for convex polytopes: a practical study. In: G. Ziegler (ed.) Polytopes—combinatorics and computation. Basel: Birkhäuser.

    Google Scholar 

  • Casey, R., de Jong, H. & Gouzé, J. (2006). Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol., 52, 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaves, M. & Gouzé, J. (2011). Exact control of genetic networks in a qualitative framework: the bistable switch example. Automatica, 47, 1105–1112.

    Article  MATH  Google Scholar 

  • Chaves, M., Tournier, L., & Gouzé, J. L. (2010). Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor., 58(2), 217–232.

    Article  Google Scholar 

  • Edwards, R. (2000). Analysis of continuous-time switching networks. Physica D, 146, 165–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Farcot, E. (2006). Geometric properties of a class of piecewise affine biological network models. J. Math. Biol., 52(3), 373–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Farcot, E., & Gouzé, J. L. (2008). A mathematical framework for the control of piecewise-affine models of gene networks. Automatica, 44(9), 2326–2332.

    Article  MathSciNet  MATH  Google Scholar 

  • Farcot, E., & Gouzé, J. L. (2009). Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop. Acta Biotheor., 57, 429–455.

    Article  Google Scholar 

  • Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303(5659), 799–805.

    Article  Google Scholar 

  • Giannakopoulos, F., & Pliete, K. (2001). Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity, 14, 1611–1632.

    Article  MathSciNet  MATH  Google Scholar 

  • Glass, L. (1975). Combinatorial and topological methods in nonlinear chemical kinetics. J. Chem. Phys., 63, 1325–1335.

    Article  Google Scholar 

  • Glass, L., & Kauffman, S. (1973). The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol., 39, 103–129.

    Article  Google Scholar 

  • Glass, L., & Pasternak, J. (1978). Stable oscillations in mathematical models of biological control systems. J. Math. Biol., 6, 207–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Gouzé, J., & Chaves, M. (2010). Piecewise affine models of regulatory genetic networks: review and probabilistic interpretation. In: J. Lévine & P. Müllhaupt (Eds.), Lecture notes in control and information sciences: Vol470. Advances in the theory of control, signals and systems, with physical modelling (pp. 241–253). Berlin: Springer.

    Google Scholar 

  • Gouzé, J., & Sari, T. (2002). A class of piecewise linear differential equations arising in biological models. Dyn. Syst., 17(4), 299–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Habets, L., & Schuppen, J. V. (2004). A control problem for affine dynamical systems on a full-dimensional polytope. Automatica, 40, 21–35.

    Article  MATH  Google Scholar 

  • Hoffmann, A., Levchenko, A., Scott, M., & Baltimore, D. (2002). The IkB-NFkB signaling module: temporal control and selective gene activation. Science, 298, 1241–1245.

    Article  Google Scholar 

  • Lee, I., Date, S., Adai, A., & Marcotte, E. (2004). A probabilistic functional network of yeast genes. Science, 306(5701), 1555–1558.

    Article  Google Scholar 

  • Mestl, T., Lemay, C., & Glass, L. (1996). Chaos in high-dimensional neural and gene networks. Physica D, 98, 33–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Shmulevich, I., Dougherty, E., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274.

    Article  Google Scholar 

  • Snoussi, E. (1989). Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst., 4(3–4), 189–207.

    MathSciNet  MATH  Google Scholar 

  • Thomas, R., & D’Ari, R. (1990). Biological feedback. Boca Raton: CRC-Press.

    MATH  Google Scholar 

  • Tournier, L., & Chaves, M. (2009). Uncovering operational interactions in genetic networks using asynchronous boolean dynamics. J. Theor. Biol., 260(2), 196–209.

    Article  MathSciNet  Google Scholar 

  • Wiback, S., Famili, I., Greenberg, H., & Palsson, B. (2004). Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J. Theor. Biol., 228(4), 437–447.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the INRIA-INSERM project ColAge and by ANR project GeMCo (ANR 2010 BLAN 0201 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Gouzé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, M., Farcot, E. & Gouzé, JL. Probabilistic Approach for Predicting Periodic Orbits in Piecewise Affine Differential Models. Bull Math Biol 75, 967–987 (2013). https://doi.org/10.1007/s11538-012-9773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9773-6

Keywords

Navigation