Skip to main content
Log in

A Differential Equation Model of Collagen Accumulation in a Healing Wound

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Wound healing is a complex biological process which involves many cell types and biochemical signals and which progresses through multiple, overlapping phases. In this manuscript, we develop a model of collagen accumulation as a marker of wound healing. The mathematical model is a system of ordinary differential equations which tracks fibroblasts, collagen, inflammation and pathogens. The model was validated by comparison to the normal time course of wound healing where appropriate activity for the inflammatory, proliferative and remodeling phases was recorded. Further validation was made by comparison to collagen accumulation experiments by Madden and Peacock (Ann. Surg. 174(3):511–520, 1971). The model was then used to investigate the impact of local oxygen levels on wound healing. Finally, we present a comparison of two wound healing therapies, antibiotics and increased fibroblast proliferation. This model is a step in developing a comprehensive model of wound healing which can be used to develop and test new therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida, L., Bagnerini, P., Habbal, A., Noselli, S., & Serman, F. (2011). A mathematical model for dorsal closure. J. Theor. Biol., 268(1), 105–119. doi:10.1016/j.jtbi.2010.09.029.

    Article  Google Scholar 

  • Ballard, J. L., Eke, C. C., Bunt, T. J., & Killeen, J. D. (1995). A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. Vasc. Surg., 22, 485–490.

    Article  Google Scholar 

  • Buckley, C. D., Pilling, D., Lord, J. M., Akbar, A. N., Scheel-Toellner, D., & Salmon, M. (2001). Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol., 22(4), 199–204.

    Article  Google Scholar 

  • Caselli, A., Latini, V., Lapenna, A., Di Carlo, S., Pirozzi, F., Benvenuto, A., & Uccioli, L. (2005). Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers. Diabet. Med., J. Br. Diabet. Assoc., 22(4), 460–465. doi:10.1111/j.1464-5491.2005.01446.x.

    Article  Google Scholar 

  • Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci., 9(1–3), 283. doi:10.2741/1184.

    Article  Google Scholar 

  • Eming, S. A., Krieg, T., & Davidson, J. M. (2000). Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol., 127(3), 514–525.

    Article  Google Scholar 

  • Flegg, J. A., Byrne, H. M., & McElwain, L. S. (2010). Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds. Bull. Math. Biol., 72(7), 1867–1891. doi:10.1007/s11538-010-9514-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, A., Hu, B., & Xue, C. (2010). Analysis of a mathematical model of ischemic cutaneous wounds. SIAM J. Math. Anal., 42(5), 2013–2040. doi:10.1137/090772630.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg, S. R., & Diegelmann, R. F. (2010). Wound healing primer. Surg. Clin. North Am., 90(6), 1133–1146. doi:10.1016/j.suc.2010.08.003.

    Article  Google Scholar 

  • Greenhalgh, D. G. (1998). The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol., 30(9), 1019–1030. doi:10.1016/S1357-2725(98)00058-2.

    Article  Google Scholar 

  • Grinnell (1994). Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol., 124(4), 401–404.

    Article  Google Scholar 

  • Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458–460. doi:10.1038/345458a0.

    Article  Google Scholar 

  • Javierre, E., Vermolen, F. J., Vuik, C., & van der Zwaag, S. (2009). A mathematical analysis of physiological and morphological aspects of wound closure. J. Math. Biol., 59(5), 605–630. doi:10.1007/s00285-008-0242-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuehn, B. M. (2007). Chronic wound care guidelines issued. JAMA J. Am. Med. Assoc., 297(9), 938–939. doi:10.1001/jama.297.9.938.

    Article  Google Scholar 

  • Kühne, H. H., Ullmann, U., & Kühne, F. W. (1985). New aspects on the pathophysiology of wound infection and wound healing—the problem of lowered oxygen pressure in the tissue. Infection, 13(2), 52–56.

    Article  Google Scholar 

  • London, N. J. M., & Donnelly, R. (2000). Ulcerated lower limb. Br. Med. J., 320(7249), 1589–1591. doi:10.1136/bmj.320.7249.1589.

    Article  Google Scholar 

  • Madden, J. W., & Peacock, E. E. (1971). Studies on the biology of collagen during wound healing, 3: dynamic metabolism of scar collagen and remodeling of dermal wounds. Ann. Surg., 174(3), 511–520.

    Article  Google Scholar 

  • Martin, P., & Leibovich, S. J. (2005). Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol., 15(11), 599–607. doi:10.1016/j.tcb.2005.09.002.

    Article  Google Scholar 

  • Menke, N. B., Cain, J. W., Reynolds, A., Chan, D. M., Segal, R. A., Witten, T. M., Bonchev, D. G., Diegelmann, R. F., & Ward, K. R. (2010). An in silico approach to the analysis of acute wound healing. Wound Repair Regen., 18(1), 105–113. doi:10.1111/j.1524-475X.2009.00549.x.

    Article  Google Scholar 

  • Menke, N. B., Ward, K. R., Witten, T. M., Bonchev, D. G., & January, R. F. D. (2006) Impaired wound healing. Clin. Dermatol., 25(1), 19–25. doi:10.1016/j.clindermatol.2006.12.005.

    Article  Google Scholar 

  • Paulsen, F., Pufe, T., Conradi, L., Varoga, D., Tsokos, M., Papendieck, J., & Petersen, W. (2002). Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J. Pathol., 198(3), 369–377. doi:10.1002/path.1224.

    Article  Google Scholar 

  • Raj, P. A., & Dentino, A. R. (2002). Current status of defensing and their role in innate and adaptive immunity. FEMS Microbiol. Lett., 206(1), 9–18. 2. doi:10.1016/S0378-1097(01)00496-7.

    Article  Google Scholar 

  • Reynolds, A., Rubin, J., Clermont, G., Day, J., & Ermentrout, G. B. (2006). A reduced mathematical model of the acute inflammatory, I: derivation of model and analysis of anti-inflammation. J. Theor. Biol., 242(1), 220–236. doi:10.1016/j.jtbi.2006.02.016.

    Article  MathSciNet  Google Scholar 

  • Ross, R. (1968). The fibroblast and wound repair. Biol. Rev., 43(1), 51–91. doi:10.1111/j.1469-185X.1968.tb01109.x.

    Article  Google Scholar 

  • Schilling, J. A. (1968). Wound healing. Physiol. Rev., 48(2), 374–423.

    Google Scholar 

  • Sherratt, J. A., & Dallon, J. C. (2002). Theoretical models of wound healing: past successes and future challenges. C. R. Biol., 325(5), 557–567.

    Article  Google Scholar 

  • Smith, R. S., Smith, T. J., Blieden, T. M., & Phipps, R. P. (1997). Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am. J. Pathol., 151(2), 317–322.

    Google Scholar 

  • Stefanini, M. O., Th Wu, F., Gabhann, F. M., & Popel, A. S. (2008). A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol., 2, 19. doi:10.1186/1752-0509-2-77.

    Article  Google Scholar 

  • Takai, Y., Miyoshi, J., Ikeda, W., & Ogita, H. (2008). Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat. Rev. Mol. Cell Biol., 9(8), 603–615. doi:10.1038/nrm2457.

    Article  Google Scholar 

  • Turner, L., Scotton, C., Negus, R., & Balkwill, F. (1999). Hypoxia inhibits macrophage migration. Eur. J. Immunol., 29, 2280–2287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, R.A., Diegelmann, R.F., Ward, K.R. et al. A Differential Equation Model of Collagen Accumulation in a Healing Wound. Bull Math Biol 74, 2165–2182 (2012). https://doi.org/10.1007/s11538-012-9751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9751-z

Keywords

Navigation